English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1892-1905 前一篇   后一篇

• 综述与评论 •

锂同位素分离

顾志国*, 李在均, 杨杰   

  1. 江南大学化学与材料工程学院 无锡 214122
  • 收稿日期:2010-12-01 修回日期:2011-02-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 顾志国 E-mail:zhjguogu@jiangnan.edu.cn

Advance in Lithium Isotope Separation

Gu Zhi-Guo*, Li Zaijun, Yang Jie   

  1. School of Chemistry and Material Engineering, Jiangnan University, Wuxi 214122, China
  • Received:2010-12-01 Revised:2011-02-01 Online:2011-09-24 Published:2011-09-02

锂的同位素在核能源中具有重要应用,锂同位素分离近年受到世界各国政府和学术界的高度重视,开展了大量的理论与应用研究工作,并在许多领域的研究取得了很大的进展,尤其是非汞萃取体系。本文对目前主要的锂同位素分离方法如锂汞齐法、萃取法、离子交换色谱法等进行了较为系统的总结、归类及评述。

关键词: 锂, 同位素, 分离

Lithium isotopes have important applications in nuclear energy source. Lithium isotope separation has attracted much attention of worldwide governments and scientists in the last few years. A lot of studies on the theory and application of lithium isotope separation have been developed, and great advances have been made in many domains, especial in the non-Hg extraction system. In this paper, the methods of lithium isotope separation such as lithium amalgam, extraction, ion exchange chromatography have been summarized, classified and reviewed in detail.

Contents
1 Introduction
2 Methods of lithium isotope separation
2.1 Lithium amalgam
2.2 Extraction
2.3 Ion exchange chromatography
2.4 Fractional crystallization and precipitation
2.5 Molten salt electrolysis
2.6 Molecular distillation
2.7 Laser
3 Conclusions and outlook

中图分类号: 

()

[1] Makhijani A, Yih K.Nuclear Wastelands: A Global Guide to Nuclear Weapons Production and Its Health and Environmental Effects.MIT Press.2000
[2] National Research Council (U.S.).Committee on Separations Technology and Transmutation Systems.National Academies Press.1996
[3] Lewis G N, Macdonald R T.J.Am.Chem.Soc., 1936, 58: 2519-2514
[4] Champetier G, Regnaut P.Bull.Soc.Chim.Fr., 1937, 4: 592-594
[5] Holleck L.Z.Elektrochem., 1938, 44: 111-120
[6] Taylor T I, Urey H C.J.Chem.Phys., 1938, 6: 429-438
[7] Johnston H L, Hutchison C A.J.Chem.Phys., 1940, 8: 869-877
[8] Perret L, RozAND l, SaIto E.PUAE.1958, 4: 595, 15/P/1267
[9] Collen B.Acta Chem.Scand., 1963, 17: 2410-2418
[10] Botter F, Molinari P, Dirian G.Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy.1965, 12: 436
[11] Arkenbout G J, Boerboom A J H, Smit W M.Ber.Bunsenges.Phys.Chem., 1966, 70: 658-664
[12] van Bennekom A J, Arkenbout G J, Smit W M.Ber.Bunsenges.Phys.Chem., 1967, 71: 215-218
[13] Okuyama K, Okada I, Saito N.J.Inorg.Nucl.Chem., 1973, 35: 2883-2895
[14] Palko A A, Drury J S, Begun G M.J.Chem.Phys.1976, 64: 1828-1837
[15] Taylor T I, Urey H C.J.Chem.Phys., 1937, 5: 597-598
[16] Rensselaer Polytechnic Institute, USAEC SO-3250, 1952
[17] Eucken A, Bratzler K.Z.Phys.Chem.Abt.A., 1935, 174: 269-273
[18] Fujie M, Fujii Y, Nomura M, Okamoto M.J.Nucl.Sci.Technol., 1986, 23: 330-337
[19] Knyazev D A, Tsivadze A Y, Klinskii G D, Levkin A V.Izv.Timiryazev.S-Kh.Akad., 1988, 1: 186
[20] Ryskin G Y, Ageev R P.Zh.Fiz.Khim., 1978, 52: 89-91
[21] Ryskin G Y, Ageev R P, Ivanenko G S.Zh.Fiz.Khim., 1978, 52: 1447-1449
[22] Ageev R P, Banasevich A N, Ivanenko G S, Ryskin G Y.Zh.Fiz.Khim., 1985, 59: 1295-1296
[23] Valfells A.US 4058440, 1977
[24] Cordova M H, Andrade C G.Nucleotecnica., 1993, 13: 15-24
[25] 程志翔 (Cheng Z X), 陈光华 (Chen G H), 曹本熹(Cao B X).Proc.-Jt.Meet.Chem.Eng., Chem.Ind.Eng.Soc.China Am.Inst.Chem.Eng., 1982, 2: 525-537
[26] Drury J S.United States Atomic Energy Commission, 1951, Y-785
[27] Martin F S, Holt R J W.Q.Rev.Chem.Soc., 1959, 13: 327-352
[28] Rozen A M, Mikhailichenko A I.Zh.Fiz.Khim., 1970, 44: 1737-1741
[29] Rozen A M, Mikhailichenko A I, Mamontova E P, Khromov Y F.Zh.Fiz.Khim., 1970, 44: 1742-1747
[30] Begun G M.ORNL-1874, 1950, 10
[31] Lee D A.Advances in Chemistry Series, Wachington D.C.1969, 89: 57
[32] 陈耀焕(Chen Y H).原子能科学技术(Atomic Energy Science and Technology), 1987, 21: 433-440
[33] Jepson B E.MLM-2622, 1979
[34] 支克正(Zhi K Z), 窦富全(Dou F Q), 杨坤山(Yang K S).原子能科学技术(Atomic Energy Science and Technology), 1982, 16: 686-690
[35] 支克正(Zhi K Z), 窦富全(Dou F Q), 杨坤山(Yang K S).原子能科学技术(Atomic Energy Science and Technology), 1983, 17: 347-352
[36] Nishizawa K, Ishino S, Watanabe H.J.Nucl.Sci.Technol.1984, 21: 694-701
[37] 姜延林(Jiang Y L), 张心祥(Zhang X X), 钱建华(Qian J H).原子能科学技术(Atomic Energy Science and Technology), 1986, 20: 2-8
[38] 方胜强(Fang S Q), 支克正(Zhi K Z), 傅立安(Fu L A).核化学与放射化学(Journal of Nuclear and Radiochemistry), 1987, 9: 142-147
[39] 傅立安(Fu L A), 方胜强(Fang S Q).核化学与放射化学(Journal of Nuclear and Radiochemistry), 1989, 11: 142-148
[40] 方胜强(Fang S Q), 傅立安(Fu L A).同位素(Journal of Isotopes), 1991, 4: 166-173
[41] 方胜强(Fang S Q), 傅立安(Fu L A).核化学与放射化学(Journal of Nuclear and Radiochemistry), 1991, 13: 87-90
[42] 方胜强(Fang S Q), 傅立安(Fu L A)高志昌(Gao Z C).核化学与放射化学(Journal of Nuclear and Radiochemistry), 1992, 14: 111-113
[43] Fang S, Fu L J.Radioanal.Nucl.Chem., 1994, 187: 25-32
[44] 方胜强(Fang S Q), 傅立安(Fu L A).同位素(Journal of Isotopes), 1994, 7: 168-170
[45] 金建南(Jin J N), 王全基(Wang Q J), 孟明礼(Meng M L).四川大学学报(Journal of Sichuan University), 1999, 36, 903-906
[46] Grote Z, Wizemann H D, Scopelliti R.Z.Anorg.Allg.Chem., 2007, 633: 858-864
[47] 杨国华(Yang G H), 曾权兴(Zeng Q X).稳定同位素分离(Stable Isotope Separation).北京: 原子能出版社(Beijing: Atomic Energy Press), 1989
[48] 邱陵(Qiu L).化学法分离同位素原理(Chemical Isotope Separaton Principces).北京: 原子能出版社(Beijing: Atomic Energy Press), 1990, 156-175
[49] Symons E A.Separ.Sci.Technol., 1985, 20: 633-651
[50] Kakihana H, Nomura T, Mori Y.J.Atomic Energy Soc.Japan, 1961, 3: 849
[51] Inoue Y, Kanzakik Y, Abe M.J.Nucl.Sci.Technol., 1996, 33: 671-672
[52] Makita Y, Kanoh H, Hirotsu T, Ooi K.Chem.Lett., 1998, 77-78
[53] Oi T, Uchiyama Y, Hosoe M, Itoh K.J.Nucl.Sci.Technol., 1999, 36: 1064-1068
[54] Oi T, Endoh M, Narimoto M, Hosoe M.J.Mater.Sci., 2000, 35: 509-513
[55] Takahashi H, Oi T.J.Mater.Sci., 2001, 36: 1621-1625
[56] Takahashi H, Miyajima T, Oi T.J.Nucl.Sci.Technol., 2002, 39: 463-466
[57] Kikuchi R, Takahashi H, Oi T.J.Mater.Sci., 2003, 38: 515-520
[58] Kanzaki Y, Suzuki N, Chitrakar R, Ohsaka T, Abe M.J.Phys.Chem., B 2002, 106: 988-995
[59] Takahashi H, Zhang Y H, Miyajima T, Oi T.J.Mater.Chem., 2006, 16: 1462-1469
[60] Glueckauf E, Barker K H.Discussions of the Faraday Soc, 1949, 7: 199-213
[61] Drury J S.United States Atomic Energy Commission, 1951, Y-777
[62] Lee D A.Bagen G M.J.Am.Chem.Soc., 1959, 81: 2332-2335
[63] Lee D A.J.Phys.Chem., 1960, 64: 187-188
[64] Lee D A.J.Am.Chem.Soc., 1961, 83: 1801-1803
[65] Katal'nikov S G, Revin V A, Andreev B M, Minaev V A.Atomnaya Energiya, 1961, 11: 528-532
[66] Lee D A.J.Chem.Eng.Data., 1961, 6: 565-566
[67] Kakihana H, Nomura T, Mori Y.J.Inorg.Nuc.Chem.1962, 24: 1145-1151
[68] Hagiwara Z, Takakura Y.J.Nucl.Sci.Technol., 1969, 6: 279-284
[69] Hagiwara Z, Takakura Y.J.Nucl.Sci.Technol., 1969, 6: 326-332
[70] Fujine S, Saito K, Naruse Y, Shiba K, Kosuge M, Itoi T, Kitsukawa T.Report 1981, JAERI-M-9735-9536
[71] Fujine S, Saito K, Shiba K.Sep.Sci.Technol., 1982, 17: 1309-1325
[72] Fujine S.Sep.Sci.Technol., 1982, 17: 1049-64
[73] Fujine S, Saito K, Shiba K, Itoi T.Sep.Sci.Technol., 1982, 17: 1545-63
[74] Fujine S, Saito K, Shiba K.Sep.Sci.Technol., 1983, 18: 15-31
[75] Kim D W, Kim S Y.J.Radioanal.Nucl.Chem., 1986, 107: 17-27
[76] Kim D W, Jung J H.J.Radioanal.Nucl.Chem., 1989, 130: 63-70
[77] Kim D W, Lee G S.J.Radioanal.Nucl.Chem., 1991, 149: 73-81
[78] Fujine S, Saito K, Shiba K.J.Nucl.Sci.Technol., 1983, 20: 439-440
[79] Nishizawa K, Watanabe H, Ishino S, Shinagawa M.J.Nucl.Sci.Technol., 1984, 21: 133-138
[80] Nishizawa K, Watanabe H.J.Nucl.Sci.Technol., 1986, 23: 843-845
[81] Kim D W, Jeon Y S, Eom T Y.J.Radioanal.Nucl.Chem., 1991, 150: 417-426
[82] Kim D W, Jeon Y S, Eom T Y.Bull.Korean Chem.Soc., 1995, 16: 683-786
[83] Kim D W, Jeon Y S, Jeong Y K.J.Radioanal.Nucl.Chem., 1995, 189: 219-227
[84] Kim D W, Hong C P, Kim C S.J.Radioanal.Nucl.Chem., 1997, 220: 229-231
[85] Kim D W, Kim B K, Park S R.J.Radioanal.Nucl.Chem., 1998, 232: 257-259
[86] Kim D W, Park S R, Kim S J.J.Radioanal.Nucl.Chem., 1998, 229: 165-168
[87] Kim D W, Kim C S, Jeon J S.J.Radioanal.Nucl.Chem., 1999, 241: 379-382
[88] Kim D W, Kim H J, Jeon J S.J.Radioanal.Nucl.Chem., 2000, 245: 571-574
[89] Kim D W.J.Radioanal.Nucl.Chem., 2002, 253: 67-71
[90] Ban Y, Nomura M, Fujii Y.J.Nucl.Sci.Technol., 2002, 39: 279-281
[91] Kim D W, Lee N S, Kim C S.Eur.Polym.J., 2002, 38: 2101-2108
[92] Otake K, Suzuki T, Kim H J.J.Nucl.Sci.Technol., 2006, 43: 419-422
[93] Jeon Y S, Jang N H, Kang B M.Bull.Korean Chem.Soc., 2007, 28: 451-456
[94] 孙培冬(Sun P D), 何丽梅(He L M), 毛明富(Mao M F), 彭奇均(Peng Q J).食品与发酵工业(Food and Fermentation Industries), 2002, 5: 64-69
[95] de Vries A E.Z.Naturf., 1959, 14a: 764
[96] Wagner G, Pelz A, Higatsberger M.J.Monat.Chem., 1954, 85: 464-466
[97] Wagner G, Pelz A J.Monat.Chem., 1955, 86: 414-18
[98] Peters K.Patent, 1959, AT 204052
[99] Peters K.British Patent, 1961, 866720
[100] Taniguchi S, Shioya I, Toyama O, Hayakawa T.Engineering and Natural Sciences, 1960, 9: 59-62
[101] Yanase S, Hayama W, Oi T Z.Naturforsch.2003, 58a: 306-312
[102] Zenzai K, Yanase S, Zhang Y H, Oi T.Prog.Nucl.Energy, 2008, 50: 494-498
[103] Yanase S, Oi T, Hashikawa S.J.Nucl.Sci.Technol., 2000, 37: 919-923
[104] Mouri M, Yanase S, Oi T.J.Nucl.Sci.Technol., 2008, 45: 384-389
[105] Black J R, Umeda G, Dunn B, McDonough W F, Kavner A.J.Am.Chem.Soc., 2009, 131: 9904-9905
[106] Fujie M, Fujii Y, Nomura M, Okamoto M.J.Nucl.Sci.Technol., 1986, 23: 330-337
[107] Burrows G.Molecular distillation.Oxford: Oxford University Press.1960: 78-86
[108] Trauger.Proc.Intern.Symposium Isotope Separation, Amsterdam, 1958, 1957: 350-367
[109] Malyusov V A, Malafeev N A, Orlov V Y, Umnik N N, Zhavoronkov N M.Kernenergie, 1962, 5: 251-256
[110] Malyusov V A, Orlov V Y, Malafeev N A, Umnik N N, Zhavoronkov N M.Atomnaya Energiya, 1961, 11: 435-439
[111] Katal'nikov S G, Andreev B M.Atomnaya Energiya, 1961, 11: 240-244
[112] Shimazu M, Takubo Y, Maeda Y.Japan.J.Appl.Phys., 1977, 16: 1275-1276
[113] Yamashita M, Kashiwagi H.US 4149077, 1979
[114] Li L, Wang Y, Li M.Chin.Phys., 1983, 3: 155
[115] Mariella R P.US 4320300, 1982
[116] Arisawa T, Maruyama Y, Suzuki Y, Shiba K.Appl.Phys.B, 1982, 28: 73-76
[117] Zhu X, Huang G, Mei G, Yang D.J.Phys.B, 1992, 25: 3307-3314
[118] Olivares I E, Duarte A E.Appl.Opt., 1999, 38: 7481-7485
[119] Olivares I E, Duarte A E, Saravia E A, Duarte F.J.Appl.Opt., 2002, 41: 2973-2977
[120] Saleem M, Hussain S, Rafiq M, Baig M A.J.Appl.Phys., 2006, 100: 053111/1-053111/7
[121] Balz J G, Bernheim R A, Gold L P.J.Chem.Phys., 1987, 86: 6-8
[122] Arisawa T, Suzuki Y, Maruyama Y, Shiba K.Chem.Phys., 1983, 81: 473-479
[123] Myers E G, Murnick D E, Softky W R.Appl.Phys., B, 1987, 43: 247-251
[124] Saleem M, Hussain S, Zia M A, Baig M A.Appl.Phys., B, 2007, 87: 723-726

[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[4] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[5] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[8] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[9] 郭驰, 张望, 涂吉, 陈盛锐, 梁济元, 郭向可. 三维铜基集流体的构筑及在锂金属电池中的应用[J]. 化学进展, 2022, 34(2): 370-383.
[10] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[11] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[12] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[13] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[14] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[15] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
阅读次数
全文


摘要

锂同位素分离