English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1854-1861 前一篇   后一篇

• 综述与评论 •

双光子技术在光生酸剂中的应用研究

夏荣捷, 金明*, 万德成, 潘海燕, 浦鸿汀   

  1. 同济大学材料学院功能高分子材料研究所 上海 201804
  • 收稿日期:2011-02-01 修回日期:2011-03-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 金明 E-mail:mingjin@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20902069)资助

Two-Photon Activable Photoacid Generators and Their Applications

Xia Rongjie, Jin Ming*, Wan Decheng, Pan Haiyan, Pu Hongting   

  1. Institute of Functional Polymers Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
  • Received:2011-02-01 Revised:2011-03-01 Online:2011-09-24 Published:2011-09-02

自2000年以来,双光子技术开始应用于光生酸剂体系中,并取得了一定的研究进展。双光子技术在光生酸剂中的应用主要有两种情况:一是单分子体系,即光生酸剂分子本身具有较高的双光子吸收截面,可以在双光子激发下产生光酸;二是双分子体系,由具有较高吸收截面的敏化剂分子和光生酸剂分子组成,通过分子间电子转移的方式产生光酸。本文就这一类具有特殊光学性质的有机分子体系的构成及其应用进行了综述,介绍了不同类型的可以利用双光子技术的光生酸剂体系,总结了双光子技术在光生酸剂发展中面临的一些关键问题,展望了双光子技术在光生酸剂中的发展方向。

Since 2000, the two-photon activable photoacid generators (PAGs) have attracted much attention and made some progress. There are two different ways for the application of two-photon in PAGs system. First is single molecular system, that is a PAG molecule which can decompose and generate strong acid under irradiation of laser by two-photon mode. Second one is a bi-molecular systems consisted of a photoacid generators and a sensitizer with high two-photon absorption cross section. The latter can transfer electron to PAG by intermolecular charge transfer. Both systems can efficiently initiate photopolymerization reactions by radical or cationic routes. In addition, the photoproduced protons can be used in 3D photolithography, 3D microfabrication. And finally, fine structures were prepared that can not accessiable by traditional linear one-photon mode. In this paper, the molecular structures of reported two-photon activable PAGs systems and their applications in two-photon 3D microfabrications are reviewed. It explores the photoacid generating mechnisms of different kinds of PAGs systems that can excitated by two-photon mode, and summarizes the present problems, that are mainly on the competitions between two-photon absorption cross sections and high quantum yield of photoacid generation, especially in single molecular systems. In the end, the future research direction in the development of two-photon activable PAGs systems are prospected.

Contents
1 Introduction
2 Progress of the two-photon activable photoacid generators (PAGs) systems
2.1 Single molecular two-photon activable PAGs systems
2.2 Bi-molecular two-photon activable PAGs systems
3 Applications of two-photon activable PAGs
4 Conclusion and perspectives

中图分类号: 

()

[1] Ito H, Willson C G (eds.).Polymers in Electronics, ACS Symp.Ser., 1984.
[2] Ito H.Jpn.J.Appl.Phys., 1992, 31: 4273-4282
[3] 王美丽 (Wang M L), 王文广 (Wang W G), 韩元利 (Han Y L), 蒲嘉陵 (Pu J L).北京印刷学院学报 (Journal of Beijing Institute of Graphic Communication), 2008, 16: 72-75
[4] 王美丽 (Wang M L), 王文广 (Wang W G), 韩元利 (Han Y L), 蒲嘉陵 (Pu J L).影像科学与光化学(Imaging Science and Photochemistry), 2008, 26: 88-93
[5] He G S, Tan L S, Zheng Q D, Prasad P N.Chem.Rev., 2008, 108: 1245-1330
[6] Ziemelis K.Nature, 2000, 406: 1021-1021
[7] 马文波 (Ma W B), 吴谊群 (Wu Y Q), 顾冬红 (Gu D H), 干福熹 (Gan F X).化学进展 (Progress in Chemistry), 2004, 16: 631-637
[8] Denk W, Strickler J H, Webb W W.Science, 1990, 248: 73-76
[9] Köhler R H, Cao H J, Zipfel W R, Webb W W.Science, 1997, 276: 2039-2042
[10] Larson D R, Zipfle W R, Williams R M, Clark S W, Bruchez M P, Wise F W, Webb W W.Science, 2003, 300: 1434-1436
[11] 李红茹 (Li H R), 谢亭 (Xie T), 胡女丹 (Hu N D), 杨刘峰 (Yang L F), 张胜涛 (Zhang S T), 高放 (Gao F).化学进展 (Progress in Chemistry), 2009, 21: 1398-1407
[12] 黄池宝 (Huang C B), 樊江莉 (Fan J L), 彭孝军 (Peng X J), 孙世国 (Sun S G).化学进展 (Progress in Chemistry), 2007, 19: 1806-1812
[13] 孟祥明 (Meng X M), 陈孝云 (Chen X Y), 傅尧 (Fu Y), 郭庆祥 (Guo Q X).化学进展 (Progress in Chemistry), 2008, 20: 2034-2044
[14] Hales J M, Matichak J, Barlow S, Ohira S, Yesudas K, Brédas J L, Perry J W, Marder S R.Science, 2010, 327: 1485-1488
[15] Li L J, Gattass R R, Gershgoren E, Hwang H, Fourkas J T.Science, 2009, 324: 910-913
[16] Del Campo A, Arzt E.Chem.Rev., 2008, 108(3): 911-945
[17] Kawata S, Sun H B, Tanaka T, Takada K.Nature, 2001, 412: 697-698
[18] Sun H B, Kawata S.Two-Photon Photopolymerization and 3D Lithographic Microfabrication, Berlin, 2004
[19] Chen Q D, Wu D, Niu L G, Wang J, Lin X F, Xia H, Sun H B.Appl.Phys.Lett., 2007, 91: art.no.171105
[20] Sun H B, Matsuo S, Misawa H.Appl.Phys.Lett.1999, 74: 786-788
[21] Tian Y P, Li L, Zhang J Z, Yang J X, Zhou H P, Wu J Y, Sun P P, Tao L M, Guo Y H, Wang C K, Xing H, Huang W H, Tao X T, Jiang M H.J.Mater.Chem., 2007, 17: 3646–3654
[22] Zhang X, Yu X Q, Sun Y M, He W, Wu Y Z, Feng Y G, Tao X T, Jiang M H.Opt.Mater., 2006, 28: 1366–1371
[23] Zhou H P, Li D M, Zhang J Z, Zhu Y M, Wu J Y, Hu Z J, Yang J X, Xu G B, Tian Y P, Xie Y, Tao X T, Jiang M H.Chem.Phys., 2006, 322: 459–470
[24] Tan D F, Li Y, Qi F J, Yang H, Gong Q H, Dong X Z, Duan X M.Appl.Phys.Lett., 2007, 90: art.no.071106
[25] Li Y, Qi F J, Yang H, Gong Q H, Dong X Z, Duan X M.Nanotechnology, 2008, 19: art.no.055303
[26] Sun Z B, Dong X Z, Chen W Q, Shoji S, Duan X M, Kawata S.Nanotechnology, 2008, 19: art.no.035611
[27] Dong X Z, Zhao Z S, Duan X M.Appl.Phys.Lett., 2008, 92(9): art.no.091113
[28] Xing J F, Dong X Z, Chen W Q, Duan X M, Takeyasu N, Tanaka T, Kawata S.Appl.Phys.Lett., 2007, 90(13): art.no.131106
[29] Li Y, Cui H B, Qi F J, Yang H, Gong Q H.Nanotechnology, 2008, 19: art.no.375304
[30] Belfield K D, Schafer K J, Liu Y, Liu J, Ren X B, Van Stryland E W.J.Phys.Org.Chem., 2000, 13: 837-849
[31] Zhou W, Kuebler S M, Braun K L, Yu T, Cammack J K, Ober C K, Perry J W, Marder S R.Science, 2002, 296: 1106-1109
[32] Kuebler S M, Braun K L, Zhou W H, Cammack J K, Yu T Y, Ober C K, Marder S R, Perry J W.J.Photochem.Photobio.A: Chem., 2003, 158: 163-170
[33] Yanez C O, Andrade C D, Belfield K D.Chem.Commun., 2009, 827-829
[34] Yanez C O, Andrade C D, Yao S, Luchita G, Bondar M V, Belfield K D.ACS App.Mater.Interface.2009, 1: 2219-22299
[35] Steidl L, Jhaveri S J, Ayothi R, Sha J, McMullen J, Ng S Y C, Zipfel W R, Zentel R, Ober C K.J.Mater.Chem., 2009, 19: 505-513
[36] Li C D, Luo L, Wang S F, Huang W T, Gong Q H, Yang Y Y, Feng S J.Chem.Phys.Lett., 2001, 340: 444-448
[37] Boiko Y, Costa J M, Wang M, Esener S.Opt.Express, 2001, 8: 571-584
[38] Li S J, Li L D, Wu F P, Wang E J.J.Photochem.Photobio.A: Chem., 2009, 203: 211-215
[39] Shukla S, Furlani E P, Vidal X, Swihart M T, Prasad P N.Adv.Mater., 2010, 22: 3695-3699
[40] Lee J T, George M C, Moore J S, Braun P V.J.Am.Chem.Soc., 2009, 131: 11294-11295
[41] Saeva F D, Breslin D T, Martic P A.J.Am.Chem.Soc., 1989, 111: 1328-1330
[42] Belfield K D, Morales A R, Kang B S, Hales J M, Hagen D J, Van Stryland E W, Chapela V M, Percino J.Chem.Mater., 2004, 16: 4634-4641
[43] Zhou W, Kuebler S M, Carrig D, Perry J W, Marder S R.J.Am.Chem.Soc., 2002, 124: 1897-1901
[44] Crivello J V, Lam J H W.J.Org.Chem., 1978, 43: 3055-3058
[45] Suzuki S, Allonas X, Fouassier J P, Urano T, Takahara S, Yamoka T.J.Photochem.Photobio.A: Chem., 2006, 181: 60-66
[46] Narewska J, Strzelczyk R, Podsiadly R.J.Photochem.Photobio.A: Chem., 2010, 212: 68-74
[47] Iwaki J, Suzuki S, Park C, Miyagawa N, Takahara S, Yamaoka T.J.photopoly.Sci.Tech., 2004, 17: 123-124
[48] Aydogan B, Gundogan A S, Ozturk T, Yagci Y.Macromolecules, 2008, 41: 3468-3471
[49] Aydogan B, Gunbas G E, Durmus A, Toppare L, Yagci Y.Macromolecules, 2010, 43: 101-106
[50] Durmaz Y Y, Moszner N, Yagci Y.Macromolecules, 41: 6714-6718

[1] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[2] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[3] 杨欣达, 姜琴, 施鹏飞*. 具有双光子效应的多核配合物[J]. 化学进展, 2018, 30(8): 1172-1185.
[4] 任晓杰, 卢晓梅, 范曲立, 黄维. 共轭聚合物的双光子吸收性质及其在生物成像领域的应用[J]. 化学进展, 2013, 25(10): 1739-1750.
[5] 黄池宝, 易道生, 冯承浩, 任安祥, 孙世国. 双光子荧光探针[J]. 化学进展, 2010, 22(12): 2408-2419.
[6] 马文波,吴谊群,顾冬红,干福熹. 双光子吸收有机材料及其在三维数字光存储中的应用[J]. 化学进展, 2004, 16(04): 631-.