English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1831-1840 前一篇   后一篇

• 综述与评论 •

超亲水表面制备方法及其应用

斯芳芳1,2, 张靓2, 赵宁2*, 陈莉1*, 徐坚2   

  1. 1. 天津工业大学材料科学与工程学院 天津 300160;
    2. 中国科学院化学研究所 北京 100190
  • 收稿日期:2010-11-01 修回日期:2011-03-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 赵宁, 陈莉 E-mail:zhaoning@iccas.ac.cn;chenlis@tjpu.edu.cn

Superhydrophilic Surfaces: Progress in Preparation Method and Application

Si Fangfang1,2, Zhang Liang2, Zhao Ning2*, Chen Li1, Xu Jian2   

  1. 1. School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, China;
    2. Institute of Chemistry Chinese Academy of Science, Beijing 100190, China
  • Received:2010-11-01 Revised:2011-03-01 Online:2011-09-24 Published:2011-09-02

特殊浸润性表面由于其独特的浸润行为在液体输送、涂料、防水、建筑和医用材料等领域都有着重要的应用。作为一种典型的特殊浸润性表面,超亲水表面(与水的接触角接近于0°)具有防雾和自清洁的功能,在工业生产和实际生活中具有广泛的应用。本文总结了近年来超亲水表面的制备方法,以及与超亲水性密切相关的其他特殊浸润性表面的研究进展,包括超亲/超疏水可逆转变、超亲/超疏水图案化以及超亲-超疏梯度渐变浸润性等,最后对超亲水表面的潜在应用和发展趋势进行了展望。

Surfaces with special wettability have important applications,such as liquid transportation, paints, waterproof, building and bioengineering. Superhydrophilicity,a typical and special wettability with a water contact angle close to 0°, endows the surface antifogging and self-cleaning properties, which show promising utilizations in industry and daily life. In this review, the recent progresses in the preparation of superhydrophilic surfaces are summarized, and other related research topics such as superhydrophilic/superhydrophobic reversible wettability, superhydrophilic/ superhydrophobic patterned wettability and gradient wettability from superhydrophilic to superhydrophobic are also mentioned. Finally, the potential application of superhydrophilic surfaces and the developing prospects are proposed.

Contents
1 Introduction
2 Methods of fabricating superhydrophilic surfaces
2.1 Sol-gel method
2.2 Electrochemical method
2.3 Electrospinning
2.4 Plasma technique
2.5 Redox reaction
2.6 Hydrothermal process
2.7 Phase separation
2.8 Vapor deposition
2.9 Layer by layer self-assembly
2.10 Templating
3 Specially functionalized wetting surfaces
3.1 Reversible superhydrophilic-superhydrophobic transition
3.2 Patterned surface
3.3 Gradient surface
4 Applications
5 Conclusions

中图分类号: 

()

[1] Vogler E A.Adv.Colloid Interf., 1998, 74: 69-117
[2] Guo C W, Wang S T, Liu H, Feng L, Song Y L, Jiang L.J.Adhes.Sci.Technol., 2008, 22: 395-402
[3] Barthlott W, Neinhuis C.Planta, 1997, 202: 1-8
[4] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T.Nature, 1997, 388: 431-432
[5] 郑建勇(Zhen J Y), 钟明强(Zhong M Q), 冯杰(Feng J).材料导报(Materials Review), 2009, 23(14): 42-44
[6] Takata Y, Hidaka S, Masuda M, Ito T.Int.J.Energ.Res., 2003, 27: 111-119
[7] Liu Z H, Qiu Y H.J.Heat Trans-t.Asme., 2006, 128: 726-729
[8] Liao L, Bao R, Liu Z H.Heat.Mass Transfer., 2008, 44: 1447-1453
[9] Piret G, Coffinier Y, Roux C, Melnyk O, Boukherroub R.Langmuir, 2008.24: 1670-1672
[10] Galopin E, Piret G, Szunerits S, Lequette Y, Faille C, Boukherroub R.Langmuir, 2010, 26 : 3479-3484
[11] Byon C, Nam Y, Kim S J, Ju Y S.J.Appl.Phys., 2010, 107: art.no.066102
[12] Sun R D, Nakajima A, Fujishima A, Watanabe T, Hashimoto K.J.Phys.Chem.B, 2001, 105: 1984-1990
[13] Fujishima A, Zhang X T, Tryk D A.Surf.Sci.Rep., 2008, 63: 515-582
[14] Wenzel R N, J.Phys.Colloid Chem., 1949, 53: 1466-1467
[15] Zorba V, Chen X B, Mao S S.Appl.Phys.Lett., 2010, 96: art.no.093702
[16] Wang L F, Zhao Y, Wang J M, Hong X, Zhai J, Jiang L, Wang F S.Appl.Surf.Sci., 2009, 255: 4944-4949
[17] Law W S, Lam S W, Gan W Y, Scott J, Amal R.Thin Solid Films, 2009, 517: 5425-5430
[18] Min Y M, Tian X L, Jing L Q, Chen S F.J.Phys.Chem.Solids, 2009, 70: 867-873
[19] Koch K, Barthlott W.Phil.Trans.R.Soc.A, 2009, 367: 1445-1486
[20] Koch K, Blecher I C, Koenig G, Kehraus S, Barthlott W.Funct.Plant Biol., 2009, 36: 339-350
[21] Koch K, Bhushan B, Barthlott W.Prog.Mater.Sci., 2009, 54: 137-178
[22] Sakai N, Fujishima A, Watanabe T, Hashimoto K.J.Phys.Chem.B., 2003, 107: 1028-1053
[23] Nakata K, Nishimoto S, Kubo A, Tryk D, Ochiai T, Murakami T, Fujishima A.Chem.Asian J., 2009, 4: 984-988
[24] Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K.Langmuir, 1998, 14: 5918-5920
[25] Machida M, Norimoto K, Watanabe T, Hashimoto K, Fujishima A.J.Mater.Sci., 1999, 34: 2569-2574
[26] Zhang X T, Sato O, Fujishima A.Langmuir, 2004, 20: 6065-6067
[27] Katsumata K, Shichi T, Fujishima A.J.Ceram.Soc.Jpn., 2010, 118: 43-47
[28] Ren D S, Cui X L, Shen J, Zhang Q, Yang X L, Zhang Z J, Ming L.J.Sol-gel.Sci.Techn., 2004, 29: 131-136
[29] Permpoon S, Berthome G, Baroux B, Joud J C, Langlet M.J.Mater.Sci., 2006, 41: 7650-7662
[30] Naseri N, Azimirad R, Akhavan O, Moshfegh A Z.J.Phys.D.Appl.Phys., 2007, 40: 2089-2095
[31] Liu Z Y, Zhang X T, Murakami T, Fujishima A.Sol.Energ.Mat.Sol.C., 2008, 92: 1434-1438
[32] Novotna P, Zita J, Krysa J, Kalousek V, Rathousky J.Appl.Catal.B-environ., 2008, 79: 179-185
[33] Horiuchi Y, Ura H, Yoo H J, Kamegawa T, Mori K, Nishiyama N, Yamashita H.ISIJ Int., 2010, 50: 255-258
[34] Latthe S S, Imai H, Ganesan V, Rao A V.Appl.Surf.Sci., 2010, 256: 217-222
[35] Venkateswara Rao A, Latthe S S, Nadargi D Y, Hirashima H, Ganesan V.J Colloid Interf.Sci., 2009, 332: 484-490
[36] Ganjoo S, Azimirad R, Akhavan O, Moshfegh A Z.J.Phys.D.Appl.Phys., 2009, 42: art.no.025302
[37] Nishio S, Tanaka T, Tada H, Nishiyama N, Fujii H, Ohmichi T, Katayama I, Yamashita H.Stud.Surf.Sci.Catal., 2005, 158: 1605-1612
[38] Lim H S, Kwak D, Lee D Y, Lee S G, Cho K.J.Am.Chem.Soc., 2007, 129: 4128-4129
[39] Kako T, Ye J.Langmuir, 2007, 23: 1924-1927
[40] Fernandez T T, Jose G, Ward M, Arunkumar K V, Unnikrishnan N V.J.Appl.Phys., 2009, 105: art.no.043513
[41] Premkumar J, Khoo S B.Chem.Commun., 2005, 640-642
[42] Zang J F, Li C M, Bao S J, Cui X Q, Bao Q L, Sun C Q.Macromolecule, 2008, 41: 7053-7057
[43] Lai Y K, Lin C J, Wang H, Huang H Y, Zhuang H F, Sun L.Electrochem.Commun., 2008, 10: 387-391
[44] Kontos A I, Likodimos V, Stergiopoulos T, Tsoukleris D S, Falaras P, Rabias I, Papavassiliou G, Kim D, Kunze J, Schmuki P.Chem.Mater., 2009, 21: 662-672
[45] Ye J M, Yin Q M, Zhou Y L.Thin Solid Films, 2009, 517: 6012-6015
[46] Oikawa Y, Minami T, Mayama H, Tsujii K, Fushimi K, Aoki Y, Skeldon P, Thompson G E, Habazaki H.Acta Mater., 2009, 57: 3941-3946
[47] Pauporte T, Bataille G, Joulaud L, Vermersch F J.J.Phys.Chem.C., 2020, 114: 194-202
[48] Zhu Y, Zhang J C, Zhai J, Jiang L.Thin Solid Films, 2006, 510: 271-274
[49] Gu S Y, Wang Z M, Li J B, Ren J.Macromol.Mater.Eng., 2010, 295: 32-36
[50] Wang L F, Zhao Y, Wang J M, Hong X, Zhai J, Jiang L, Wang F S.Appl.Surf.Sci., 2009, 255: 4944–4949
[51] Nakatani T, Okamoto K, Omura I, Yamashita S.New Diam.Front.C.Tec., 2007, 17: 289-300
[52] Fang J, Kelarakis A, Estevez L, Wang Y, Rodriguez R, Giannelis E P.J.Mater.Chem., 2010, 20: 1651-1662
[53] Tang K J, Wang X F, Yan W F, Yu J H, Xu R R.J.Membrane Sci., 2006, 286: 279-284
[54] Chen X H, Bin Yang G, Kong L H, Dong D, Yu L G, Chen J M, Zhang P Y.Cryst.Growth Des., 2009, 9: 2656-2661
[55] Song W, Jia H Y, Cong Q A, Zhao B.J.Colloid Interf.Sci., 2007, 311: 456-460
[56] Shi F, Chen X X, Wang L Y, Niu J, Yu J H, Wang Z Q, Zhang X.Chem.Mater., 2005, 17: 6177-6180
[57] Wang D A, Guo Z G, Chen Y M, Hao J, Liu W M.Inorg.Chem., 2007, 46: 7707-7709
[58] Wang D A, Liu Y, Hu H Y, Zeng Z X, Zhou F, Liu W M.J.Phys.Chem.C., 2008, 112: 16123-16129
[59] Song S, Jing L Q, Li S D, Fu H G, Luan Y B.Mater.Lett., 2008, 62: 3503-3505
[60] Han Y, Wu G, Wang M, Chen H.Nanotechnology, 2009, 20: art.no.235605
[61] Liu X, He J.Langmuir, 2009, 25: 11822-11826
[62] Song W L, Veiga D D, Custodio C A, Mano J F.Adv.Mater., 2009, 21: 1830-1834
[63] Zhang L, Zhang X Y, Dai Z, Wu J J, Zhao N, Xu J.J.Colloid Interf.Sci., 2010, 345: 116-125
[64] Shirolkar M, Abyaneh M K, Singh A, Tomer A, Choudhary R, Sathe V, Phase D, Kulkarni S.J.Phys.D.Appl.Phys., 2008, 41: art.no.155308
[65] Liu Y Y, Qian L Q, Guo C, Jia X, Wang J W, Tang W H.J.Alloy.Compd., 2009, 479: 532-535
[66] Mirshekari M, Azimirad R, Moshfegh A Z.Appl.Surf.Sci., 2010, 256: 2500-2506
[67] Li Y, Sasaki T, Shimizu Y, Koshizaki N.Small, 2008, 4: 2286-2291
[68] Li L, Li Y, Gao S Y, Koshizaki N.J.Mater.Chem., 2009, 19: 8366-8371
[69] Liu H, Feng L, Zhai J, Jiang L, Zhu D B.Langmuir, 2004, 20: 5659-5661
[70] Kuo C S, Tseng Y H, Li Y Y.Chem.Lett., 2006, 35: 356
[71] Rico V, Romero P, Hueso J L, Espinos J P, Gonzalez-Elipe A R.Catal.Today, 2009, 143: 347-354
[72] Borras A, Barranco A, Gonzalez-Elipe A R.Langmuir, 2008, 24: 8021-8026
[73] Cebeci F C, Wu Z Z, Zhai L, Cohen R E, Rubner M F.Langmuir, 2006, 22: 2856-2862
[74] Wu Z, Lee D, Rubner M F, Cohen R E.Small, 2007, 3: 1445-1451
[75] Liu X M, Du X, He J H.Chem.Phys.Chem., 2008, 9: 305-309
[76] Xu Q C, Wellia D V, Sk M A, Lim K H, Loo J S C, D.Liao W, Amal R, Tan T T Y.J.Photoch.Photobio.A., 2010, 210: 181-187
[77] Saison T, Peroz C, Chauveau V, Berthier S, Sondergard E, Arribart H.Bioinspir.Biomim., 2008, 3: art.no.046004
[78] Choi S J, Suh K Y, Lee H H.J.Am.Chem.Soc., 2008, 130: 6312-6313
[79] Lu H B, Liao L, Li J C, Shuai M, Liu Y L.Appl.Phys.Lett., 2008, 92: art.no.093102
[80] Xu L B, Chen W, Mulchandani A, Yan Y S.Angew.Chem.Int.Edit., 2005, 44: 6009-6012
[81] Wang J X, Wen Y Q, Hu J P, Song Y L, Jiang L.Adv.Funct.Mater., 2007, 17: 219-225
[82] Zhu Y, Li J M, He H Y, Wan M X, Jiang L.Macromol.Rapid.Commun., 2007, 28: 2230-2236
[83] Hu S X, Cao X Y, Song Y L, Li C, Xie P, Jiang L.Chem.Commun., 2008, 44: 2025-2027
[84] Qing G Y, Wang X, Jiang L, Fuchs H, Sun T L.Soft Matter, 2009, 5: 2759-2765
[85] Xia F, Ge H, Hou Y, Sun T L, Chen L, Zhang G Z, Jiang L.Adv.Mater., 2007, 19: 2520-2524
[86] Guo Y, Xia F, Xu L, Li J, Yang W S, Jiang L.Langmuir, 2010, 26: 1024-1028
[87] Lim H S, Lee S G, Lee D H, Lee D Y, Lee S, Cho K.Adv.Mater., 2008, 20: 4438-4441
[88] Zhang J L, Lu X Y, Huang W H, Han Y C.Macromol.Rapid.Commun., 2005, 26: 477-480
[89] Lim H S, Han J T, Kwak D, Jin M H, Cho K.J.Am.Chem.Soc., 2006, 128: 14458-14459
[90] Notsu H, Kubo W, Shitanda I, Tatsuma T.J.Mater.Chem., 2005, 15: 1523-1527
[91] Zhang X T, Jin M, Liu Z Y, Tryk D A, Nishimoto S, Murakami T, Fujishima A.J.Phys.Chem.C, 2007, 111: 14521-14529
[92] Nishimoto S, Sekine H, Zhang X T, Liu Z Y, Nakata K, Murakami T, Koide Y, Fujishima A.Langmuir, 2009, 25: 7226-7228
[93] Nishimoto S, Kubo A, Nohara K, Zhang X, Taneichi N, Okui T, Liu Z, Nakata K, Sakai H, Murakami T, Abe M, Komine T, Fujishima A.Appl.Surf.Sci., 2009, 255: 6221-6225
[94] Yu X, Wang Z Q, Jiang Y G, Zhang X.Langmuir, 2006, 22: 4483-4486
[95] Han J T, Kim S, Karim A.Langmuir, 2007, 23: 2608-2614
[96] Zhang J L, Han Y C.Langmuir, 2008, 24: 796-801
[97] Ohdaira T, Nagai H, Kayano S, Kazuhito H.Surg.Endosc., 2007, 21: 333-338
[98] Funakoshi K, Nonami T.J.Coat.Technol.Res., 2007, 4: 327-333
[99] Corres J M, Matias I R, Hernaez M, Bravo J, Arregui F J.IEEE Sens.J., 2008, 8: 281-285
[100] Ueno T, Yamada M, Hori N, Suzuki T, Ogawa T.Int.J.Oral Max.Impl., 2010, 25: 287-294
[101] Tahk D, Kim T I, Yoon H, Choi M, Shin K, Suh K Y.Langmuir, 2010, 26: 2240-2243
[102] Anil M, Ahmed S F, Yi J W, Moon M W, Lee K R, Kim Y C, Seok H K, Han S H.Diam.Relat.Mater., 2010, 19: 300-304
[103] Chen D, Tan L, Liu H, Hu J, Li Y, Tang F.Langmuir, 2010, 26: 4675-4679
[104] Miyahara Y, Mitamura K, Saito N, Takai O.J.Vacuum Sci.Technol.A., 2009, 27: 1183-1188
[105] Komori K, Nada J, Nishikawa M, Notsu H, Tatsuma T, Sakai Y.Anal.Chim.Acta., 2009, 653: 222-227
[106] Lai Y K, Huang J Y, Gong J J, Huang Y X, Wang C L, Chen Z, Lin C J.J.Electrochem.Soc., 2009, 156: 480-484
[107] Masuda Y, Kato K.Chem.Mater., 2008, 20: 1057-1063
[108] Li X, Tian Y, Xia P, Luo Y, Rui Q.Anal.Chem., 2009, 81: 8249-8255
[109] 阴启明(Yin Q M), 叶嘉明(Ye J M), 周勇亮(Zhou Y L).高校化学学报(Chem.J.Chinese U.), 2008, 29(8): 1647-1649
[110] 江雷(Jiang L), 冯琳(Feng L).仿生智能纳米界面材料(Bionic and intelligent nano interfacial material).北京: 化学工业出版社(Beijing: Chemical Industry Press), 2007.92-104

[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[3] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[4] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[5] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[6] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[7] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[8] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[9] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[10] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[11] 杨卧龙, 纪献兵, 徐进良. 从自然到仿生到实际应用的超亲水表面[J]. 化学进展, 2016, 28(6): 763-772.
[12] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[13] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[14] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[15] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
阅读次数
全文


摘要

超亲水表面制备方法及其应用