English
新闻公告
More
化学进展 2010, Vol. 22 Issue (10): 2024-2032 前一篇   后一篇

• 综述与评论 •

乙烯和降冰片烯加成共聚合催化体系*

姚臻1  戴斌斌1  刘少杰1  曹堃1**  傅建松2   谢家明2   

  1. (1.化学工程联合国家重点实验室  浙江大学化工系聚合与聚合物工程研究所  杭州 310027;2.中国石油化工股份有限公司上海石化化工研究所 上海 200540)
  • 收稿日期:2010-02-08 修回日期:2010-03-25 出版日期:2010-10-24 发布日期:2010-10-20
  • 通讯作者: 曹堃 E-mail:kcao@che.zju.edu.cn
  • 基金资助:

    国家自然科学基金

 Catalysts Used in Addition Copolymerization of Ethylene and Norbornene

Yao Zhen1    Dai Bibin1    Liu Shaojie  Cao Kun1**   Fu Jiansong  Xie Jiaming2   

  1. (1.State Key Laboratory of Chemical Engineering, Institute of Polymerization and Polymer Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;2.Chemical Research Institute of Shanghai Petrochemical Company Limited, SINOPEC, Shanghai 200540, China)
  • Received:2010-02-08 Revised:2010-03-25 Online:2010-10-24 Published:2010-10-20
  • Contact: Cao Kun E-mail:kcao@che.zju.edu.cn

在C5系列的综合利用中近年来倍受关注的环烯烃共聚物是最具有发展潜力的高端产品之一。本文评述了用于乙烯和降冰片烯类共聚合体系新型加成催化剂的最新进展,包括茂金属催化剂、非茂金属催化剂和后过渡金属催化剂三大类。开发新型半夹心型催化剂是茂金属研究领域的热点,目前主要有两类:1.限定几何构型催化剂(CGC);2. Cp’MX3和Cp’M(R)X2 (Cp’=茂基或取代茂基;M=Ti, Zr, Hf;X=卤素或烷基;R=OAr, NR2, NPR3)。非茂金属催化剂则具有亲电能力更强的活性中心及更开放的配位空间,通常具有更高的NB插入率,甚至在一定条件下具有类活性聚合的特征。而后过渡金属催化剂由于对氧(或Lewis酸)更不敏感,导致对极性基团有更好的耐受性。此外,重点围绕配体结构对催化特性的影响,如何提高分子量和环烯烃的有效插入率及其序列结构的调控等进行了对比和剖析,并展望其今后发展趋势。

At present the cyclicolefin copolymer is one of the most promising alternative products with high level in the comprehensive utilization of C5 field, which has attracted more attention. The development of metallocene catalysts, non-metalocene catalysts and late transition metal catalysts used in ethylene-norbornene copolymerization are promptly reviewed. Developing new half-sandwich catalysts should be the hot spot in the field of metallocene catalysts. Half-sandwich catalysts can be further divided into two kinds, which are constrained geometry catalysts and Cp’MX3 or Cp’M(R)X2 (Cp’= cyclopentadienyl group or substituted cyclopentadienyl group; M=Ti, Zr, Hf;X= halogen or alkyl; R=OAr, NR2, NPR3). Non-metallocene catalysts have much more electrophilic metal center and more open active site, which lead to higher norbornene incorporation efficiency. In some certain conditions, it is even able to exhibit the characteristics of quasi-living polymerization. Compared to former transition metal catalysts, late transition metal catalysts should be less sensitive to oxygen and lewis acid, and owns better tolerance against the polar groups. Based on the characteristics of the copolymerization, the catalytic performance is analyzed firstly and then effect of ligand’s structure on the catalytic property. Moreover, improving the incorporation efficiency of cyclic olefin and controlling the sequence and molecular weight should be the main focus on this paper. The future research in the area has also been prospected.

Contents
1 Introduction
2 Metallocene catalysts
3 Non-metallocene catalysts
4 Late transition metal catalysts
5 Conclusions

()

[1 ] 赵健( Zhao J) ,吕英莹( Lv Y Y) ,胡友良(Hu Y L) . 化学进
展( Progress in Chemistry) ,2001,13(1) : 48—55
[2 ] 高海洋(Gao H Y) ,张玲( Zhang L) ,伍青(Wu Q) . 高分子
通报( Polymer Bulletin) ,2004,1: 44—49
[3 ] 孙文华( Sun W H) ,杨海健( Yang H J) ,徐桂云( Xu G Y) ,
张红江( Zhang H J ) , 东升魁( Dong S K ) . 石油化工
( Petrochemical Technology) ,2004,33(1) : 76—81[4 ] 谢家明(Xie J M) ,曹堃( Cao K) ,赵全聚( Zhao Q J) ,姚臻
(Yao Z) ,吕飞( Lv F) . 化工进展( Chemical Industry and
Engineering Progress) ,2006,25(8) : 860—863
[5 ] Li X F,Hou Z M. Coordination Chemistry Reviews,2008,252:
1842—1869
[6 ] Yao Z,Lv F,Liu S J,Cao K. J. Appl. Polym. Sci. ,2008,
107: 286—291
[7 ] Yao Z,Liu S J,Lv F,Cao K. J. Appl. Polym. Sci. ,2008,
109: 4010—4014
[8 ] Liu S J,Yao Z,Cao K. J. Appl. Polym. Sci. ,2009,112:
2493—2496
[9 ] Liu S J,Cao K,Yao Z,Li B G,Zhu S P. AIChE J. ,2009,
55: 663—674
[10] Liu S J,Yao Z,Cao K,Li B G,Zhu S P. Macromol. Rapid.
Commun. ,2009,30: 548—553
[11] Li X F,Baldamus J,Hou Z M. Angew. Chem. Int. Ed. ,
2005,44: 962—965
[12] Ravasio A,Zampa C,Boggioni L,Tritto I,Hitzbleck J,Okuda
J. Macromolecules,2008,41: 9565—9569
[13] Ni J G,Lv C S,Zhang Y T,Liu Z Q,Mu Y. Polymer,2008,
49: 211—216
[14] Nomura K,Tsubota M,Fujiki M. Macromolecules,2003,36:
3797—3799
[15] Wang W, Tanaka T, Tsubota M, Fujiki M, Yamanaka S,
Nomura K. Adv. Synth. Catal. ,2005,347: 433—446
[16] Nomura K,Wang W,Fujiki M,Liu J Y. Chem. Commun. ,
2006,2659—2661
[17] Nomura K, Yamada J, Wang W, Liu J Y. Journal of
Organometallic Chemistry,2007,692: 4675—4682
[18] Yoshida Y,Mohri J,Ishii S,Mirani M,Saito J,Matsui S,
Makio H,Nakano T,Tanaka H,Onda M,Yamamoto Y,Mizuno
A,Fujita T. J. Am. Chem. Soc. ,2004,126: 12023—12032
[19] Yoshida Y,Matsui S,Fujita T. J. Organomet. Chem. ,2005,
690: 4382—4397
[20] Li X F,Dai K,Ye W P,Pan L,Li Y S. Organometallics,
2004,23: 1223—1230
[21] Zuo W W,Sun W H,Zhang S,Hao P,Shiga A. Journal of
Polymer Science: Part A: Polymer Chemistry, 2007, 45:
3415—3430
[22] Gao M L,Wang C,Sun X L,Qian C T,Ma Z,Bu S Z,Tang
Y,Xie Z W. Macromol. Rapid Commun. ,2007,28: 1511—
1516
[23] Gao M L,Sun X L,Gu Y F,Yao X L,Li C F,Bai J Y,Wang
C,Ma Z,Tang Y,Xie Z W,Bu S Z,Qian C T. Journal of
Polymer Science: Part A: Polymer Chemistry, 2008, 46:
2807—2819
[24] Li Y F,Gao H Y,Wu Q. Journal of Polymer Science: Part A:
Polymer Chemistry,2008,46: 93—101
[25] Hu H,Gao H Y,Song K M,Liu F S,Long J M,Zhang L,Zhu
F M,Wu Q. Polymer,2008,49: 4552—4558
[26] Sudhakar P. Journal of Polymer Science: Part A: Polymer
Chemistry,2008,46: 444—452
[27] Vijayakrishna K,Sundararajan G. Polymer,2006,47: 8289—
8296
[28] Wang W,Nomura K. Macromolecules,2005,38: 5905—5913
[29] Wang W,Nomura K. Adv. Synth. Catal. ,2006,348: 743—
750
[30] Tang L M,Wu J Q,Duan Y Q,Pan L,Li Y G,Li Y S. Journal
of Polymer Science: Part A: Polymer Chemistry,2008,46:
2038—2048
[31] Wu J Q,Pan L,Li Y G,Liu S R,Li Y S. Organometallics,
2009,28: 1817—1825
[32] Woodman T J,Sarazin Y,Garratt S,Fink G,Bochmann M.
Journal of Molecular Catalysis A: Chemical,2005,235: 88—97
[33] Rodriguez B A,Delferro M,Marks T J. Organometallics,2008,
27: 2166—2168
[34] Kiesewetter J,Arikan B,Kaminsky W. Polymer,2006,47:
3302—3314
[35] Wehrmann P, Zuideveld M, Thomann R, Mecking S.
Macromolecules,2006,39: 5995—6002
[36] Skupov K M,Marella P R,Hobbs J L,McLntosh L H,Goodall
B L,Claverie J P. Macromolecules,2006,39: 4279—4281
[37] Younkin T R,Connor E F,Henderson J I,Friedrich S K,
Grubbs R H,Bansleben D A. Science,2000,287: 460—462
[38] Connor E F,Younkin T R,Henderson J I,Hwang S J,Grubbs
R H,Roberts W P,Litzau J J. Journal of Polymer Science: Part
A: Polymer Chemistry,2002,40: 2842—2854
[39] Diamanti S J,Khanna V,Hotta A,Yamakawa D,Shimizu F,
Kramer E J,Fredrickson G H,Bazan G C. J. Am. Chem.
Soc. ,2004,126: 10528—10529
[40] Diamanti S J,Khanna V,Hotta A,Coffin R C,Yamakawa D,
Kramer E J,Fredrickson G H,Bazan G C. Macromolecules,
2006,39: 3270—3274
[41] Diamanti S J, Ghosh P, Shimizu F, Bazan G C.
Macromolecules,2003,36: 9731—9735
[42] Liu S S, Borkar S, Newsham D, Yennawar H, Sen A.
Organometallics,2007,26: 210—216
[43] Huang C F,Wang S K,Kuo S W,Huang W J,Chang F C.
Journal of Applied Polymer Science,2004,92: 1824—1833
[44] Fang J H,Hu M J,Zhou G Q,Yang J P,Gao H Q. Acta
Polymerica Sinica,2008,6: 631—634

[1] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[2] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[3] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[4] 杨梦茹, 李华静, 罗宁丹, 李锦, 周安宁, 李远刚. 二氧化碳电催化还原产乙烯: 催化剂、反应条件和反应机理[J]. 化学进展, 2019, 31(2/3): 245-257.
[5] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[6] 曹堃, 袁贝, 刘学, 吴敏芳, 姚臻*. 手性降冰片烯衍生物的制备及应用[J]. 化学进展, 2017, 29(6): 605-616.
[7] 徐铁齐*. 极性乙烯基单体立体选择性聚合催化剂[J]. 化学进展, 2017, 29(2/3): 285-292.
[8] 朱世琴, 李文龙, 朱为宏. 新型烯桥二芳基乙烯光致变色体系[J]. 化学进展, 2016, 28(7): 975-992.
[9] 赵凤阳, 秘一芳, 安全福, 高从堦. 荷正电聚乙烯亚胺纳滤膜的制备与应用[J]. 化学进展, 2016, 28(4): 541-551.
[10] 何福喜, 唐刚, 闵晓燕, 胡敏奇, 邵立东, 毕韵梅. N-乙烯基己内酰胺的活性/可控自由基聚合[J]. 化学进展, 2016, 28(2/3): 328-336.
[11] 杜海燕, 雷霞, 许玉玉, 梁镇海, 王永洪. 聚乙烯醇基聚合物材料在多元驱动方式下的形状记忆行为[J]. 化学进展, 2016, 28(11): 1648-1657.
[12] 徐铁齐, 李长宏. Lewis酸碱对在聚合中的应用[J]. 化学进展, 2015, 27(8): 1087-1092.
[13] 刘欣, 赵海雷, 解晶莹, 汤卫平, 潘延林, 吕鹏鹏. 锂离子电池高比容量负极用粘结剂[J]. 化学进展, 2013, 25(08): 1401-1410.
[14] 徐斌, 张继博, 马愫倩, 陈金龙, 董玉杰, 田文晶*. 二苯乙烯基蒽衍生物:聚集诱导发光性质、机理及应用[J]. 化学进展, 2013, 25(07): 1079-1089.
[15] 张文生, 李伟, 匡春香. 1,1-二溴-2-取代苯基乙烯在环化反应中的应用[J]. 化学进展, 2013, 25(07): 1149-1157.