English
新闻公告
More
化学进展 2010, Vol. 22 Issue (10): 1901-1910 前一篇   后一篇

• 综述与评论 •

特殊形貌CdSe纳米晶的制备*

张居正1  高善民1,2   黄柏标2   戴瑛2  王菊1  卢娟1   

  1. (1. 鲁东大学化学与材料科学学院 烟台264025; 2. 山东大学晶体材料国家重点实验室 济南 250100)
  • 收稿日期:2010-01-13 修回日期:2010-03-09 出版日期:2010-10-24 发布日期:2010-10-20
  • 通讯作者: 高善民 E-mail:gaosm@ustc.edu
  • 基金资助:

    国家重点基础研究发展计划;山东省中青年科学家科研奖励基金;山东省教育厅科研计划

Preparation of CdSe Nanocrystals with Special Morphologies

Zhang JuzhengGao Shanmin1,2**  Huang Baibiao Dai Ying2   Wang Ju1   Lu Juan1   

  1. (1.School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; 2. State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China)
  • Received:2010-01-13 Revised:2010-03-09 Online:2010-10-24 Published:2010-10-20
  • Contact: Gao Shanmin E-mail:gaosm@ustc.edu

CdSe纳米晶是II-VI族半导体中研究最多的材料之一,由于其发射波长随纳米晶的尺寸而改变,从而可以覆盖从绿到红的宽光谱范围,因此CdSe纳米晶可以应用于生物标记和荧光显示等领域,各种制备CdSe纳米晶的方法也应运而生。因制备方法的不同,所得CdSe纳米晶的粒径、相结构及形貌也不同,进而影响CdSe纳米晶的性质。本文归纳了7种典型的制备一些特殊形貌的CdSe纳米晶的最新方法,并对各种方法的优缺点作了简单评价。最后,对这一领域未来的研究和发展方向作了展望。

As an important II-VI group semiconductor material, CdSe nanocrystals have drawn much attention recently due to its unique size-dependent fluorescence tunable across the visible spectrum. CdSe semiconductor nanocrystals exhibit great potential used as a new type of fluorescence materials and labeling material for biological research. Various preparation methods have been developed to synthesize differently size and morphology CdSe nanocrystals. With the different preparing methods, the diameter, phase structure, morphologies uniformity, and properties are also different accordingly. In this paper, the seven typical methods of preparation and control of morphology of CdSe nanocrystals are summarized in detail. Meanwhile, their corresponding strongpoints and weaknesses are also reviewed. The challenges about preparing CdSe nanocrystals are figured out and the future directions are also proposed.

Contents
1 Introduction
2 Preparation methods of CdSe nanocrystals
2.1 Organic liquid synthesis method
2.2 Low temperature water solution method
2.3 Template electrochemical deposition method
2.4 Vapor deposition method
2.5 Hydrothermal and solvothermal methods
2.6 Irradiation chemical method
2.7 Self-assembly technology
3 Conclusions and prospects

()

[1] 邓志杰(Deng Z J),郑安生(Zheng A S). 半导体材料(Semiconductor Materials). 北京: 化学工业出版社(Beijing: Chemical Inductor Press), 2004: 65-74. [2] Kazes M, Lewis D Y, Ebenstein Y, Mokari T, Banin U. Adv. Mater., 2002, 14(4): 317-321. [3] Schierhorn M, Boettcher S W, Ivanovskaya, A, Norvell E, Sherman J B, Stucky G D, Moskovits M. J. Phys. Chem. C, 2008, 112(23): 8516-8520. [4] Peng J J, Liu S P, Wang L, Liu X W, He Y Q. J. Colloid and Interface Sci., 2009, 338(2): 578–583. [5] Lee S K C, Yu Y H, Perez O, Puscas S, Kosel T H, Kuno M. Chem. Mater., 2010, 22(1): 77-84. [6] Zhang Y F, You L P, Shan X D, Wei X L, Hou H B, Xu W J, Dai L. J. Phys. Chem. C, 2007, 111(39): 14343-14347. [7] Zotti G, Vercelli B, Berlin A, Chin P T K, Giovanella U. Chem. Mater., 2009, 21(11): 2258–2271. [8] Alivisatos A P. Science, 1996, 271(5251): 933-937. [9] Burda C, Chen X B, Narayanan R, EI-Sayed M A. Chem. Rev., 2005, 105(4): 1025-1102. [10] Hu J T, Li L S, Yang W D, Manna L, Wang L, Alivisatos A P. Science, 2001, 292(5524): 2060-2063. [11] Li J B, Wang L W. Nano. Lett., 2003, 3(10): 1357-1363. [12] Peng Z A, Peng X G. J. Am. Chem. Soc., 2001, 123(7): 1389-1395. [13] Pradhan N, Xu H F, Peng X G. Nano. Lett., 2006, 6 (4): 720–724. [14] Cheng J H, Chao H Y, Chang H Y, Hsu C H, Cheng C L, Chen T T, Chen Y F, Chu M W. Physica E, 2008, 40(6): 2000–2003. [15] Peng Q, Dong Y J, Deng Z X, Li Y D. Inorg. Chem., 2002, 41(20): 5249-5254. [16] Manna L, Milliron D J, Meisel A, Scher E C, Alivisatos A P. Nature Mater., 2003, 2(6): 382-385. [17] Venugopal R, Lin P-I, Liu C C, Chen Y –T. J. Am. Chem. Soc., 2005, 127(32): 11262-11268. [18] Cheng J H, Chao H Y, Chang Y H, Hsu C H, Cheng C L, Chu M W, Chen Y F. Appl. Phys. A: Mater. Sci. & Processing, 2009, 97(1): 79–83. [19] Ma C, Ding Y, Moore D, Wang X D, Wang Z L. J. Am. Chem. Soc., 2004, 126(3): 708-709. [20] Zhao N N, Liu K, Greener J, Nie Z H, Kumacheva E. Nano. Lett., 2009, 9(8): 3077-3081. [21] Murray C B, Noms D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115(19): 8706-8715. [22] Alam M M, Mushfiq M, Han H, Bhowmik P K, Goswami K. Macromolecules, 2008, 41(21): 7790-7793. [23] Wang F D, Tang R, Buhro, W E. Nano. Lett., 2008, 8(10): 3521-3524. [24] Zhang C X, O`Brien S, Balogh L. J. Phys. Chem. B, 2002, 106(40): 10316-10321. [25] Shen L, Soong R, Wang M F, Lee A, Wu C, Scholes G D, Macdonald P M, Winnik M A. J. Phys. Chem. B, 2008, 112(6): 1626-1633. [26] Wang M F, Felorzabihi N, Guerin G, Haley J C, Scholes G D, Winnik M A. Macromolecules, 2007, 40(17): 6377-6384. [27] Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-EL M, Petrich J W, Lin Z Q. J. Am. Chem. Soc., 2007, 129(42): 12828-12833. [28] Zhang Q L, Russell T P, Emrick T. Chem. Mater., 2007, 19(15): 3712-3716. [29] Peng Z A, Peng X G. J. Am. Chem. Soc., 2002, 124(13): 3343-3353. [30] Peng X G. Adv. Mater., 2003, 15(5): 459-463. [31] Wang W, Banerjee S, Jia S G, Steigerwald M L, Herman I P. Chem. Mater., 2007, 19(10): 2573-2580. [32] Xi L F, Lam Y M. Chem. Mater., 2009, 21(15): 3710–3718. [33] Wang F D, Tang R, Kao J L -F, Dingman S D, Buhro W E. J. Am. Chem. Soc., 2009, 131 (13): 4983–4994. [34] Zhou X P, Kobayashi Y, Romanyuk V, Ochuchi N, Takeda M, Tsunekawa S, Kasuya A. Appl. Sur. Sci., 2005, 242(3-4): 281–286. [35] Chu M Q, Sun Y, Shen X Y, Liu G J. Physica E, 2006, 35(1): 75–80. [36] Zhang B B, Gong X Q, Hao L J, ChenG J, Han Y, Chang J. Nanotechnology, 2008, 19(46): 1-9. [37] Sharma H, Sharma S N, Kumar U, Singh V N, Mehta B R, Singh G, Shivaprasad S M, Kakkar R. J. Mater. Sci.: Mater. Medicine, 2009, 20(1): 123-130. [38] Rogach A L, Kornowski A, Gao M Y, Eychmuller A, Weller H S. J. Phys. Chem. B, 1999, 103(16): 3065-3069. [39] Chen X F, Hutchison J L, Dobson P J, Wakefield G. J. Colloid and Interface Sci., 2008, 319(1): 140–143. [40] Li J H, Ren C L, Liu X Y, Hu Z D, Xue D S. Mater. Sci. Eng. A, 2007, 458(1-2): 319–322. [41] Shim H S, Shinde V R, Kim J W, Gujar T P, Joo O – S, Kim H J, Kim W B. Chem. Mater., 2009, 21(9): 1875-1883. [42] Shinde V R, Gujar T P, Noda T, Fujita D, Lokhande C D, Joo O – S. J. Phys. Chem. C, 2009, 113(32): 14179–14183. [43] Xu D S, Shi X S, Guo G L, Gui L L, Tang Y Q. J. Phys. Chem. B, 2000, 104(21): 5061-5063. [44] Sun H Y, Li X H, Chen Y, Guo D F, Xie Y W, Li W, Liu B T, Zhang X Y. Nanotechnology, 2009, 20(42): 1-8. [45] Zhang H, Quan X, Chen S, Yu H T, Ma N. Chem. Mater., 2009, 21 (14): 3090–3095. [46] Gudage Y G, Deshpande N G, Sagade A A, Sharma R P, Pawar S M, Bhosale C H. Bull. Mater. Sci., 2007, 30(4): 321–327. [47] Shaikh A V, Mane R S, Pathan H M, Min B –K, Joo O –S, Han S –H. J. Electroanal. Chem., 2008, 615(2): 175-179. [48] Schierhorn M, Boettcher S W, Kraemer S, Stucky G D, Moskovits M. Nano. Lett., 2009, 9(9): 3262-3267. [49] Su Y W, Wu C S, Chen C C, Chen C D. Adv. Mater., 2003, 15(1): 49-51. [50] Zhou M J, Zhu H J, Wang X N, Xu Y M, Tao Y, Hark S, Xiao X D, Li Q. Chem. Mater., 2010, 22(1): 64-69. [51] Kim Y L, Jung J H, Kim K H, Yoon H S, Song M S, Bae S H, Kin Y. Nanotechnology, 2009, 20(9): 1-7. [52] Liu C, Wu P C, Sun T, Dai L, Ye Y, Ma R M, Qin G G. J. Phys. Chem. C, 2009, 113 (32): 14478–14481. [53] Wang W Z, Geng Y, Yan P, Liu F Y, Xie Y, Qian Y T. J. Am. Chem. Soc., 1999, 121(16): 4062-4063. [54] Yang Q, Tang K B, Wang C R, Qian Y T, Zhang S Y. J. Phys. Chem. B, 2002, 106(36): 9227-9230. [55] Yao W T, Yu S H, Liu S J, Chen J P, Liu X M, Li F Q. J. Phys. Chem. B, 2006, 110(24): 11704–11710. [56] Yu S H, Wu Y S, Yang J, Han Z H, Xie Y, Qian Y T, Liu X M. Chem. Mater., 1998, 10(9): 2309-2312. [57] 刘勇(Xu Y), 徐耀(Xu Y), 李军平(Li J P), 章斌(Zhang B), 吴东(Wu D), 孙予罕(Sun Y H).化学学报(Acta Chimica Sinica), 2005, 63(21): 2017-2020. [58] Gao F, Lu Q Y, Xie S H, Zhao D Y. Adv. Mater., 2002, 14(21): 1537-1540. [59] Peng Q, Dong Y J, Deng Z X Sun X M, Li Y D. Inorg. Chem., 2001, 40(16): 3840-3841. [60] Xi L F, Lam Y M, Xu Y P, Li L J. J. Colloid and Interface Sci., 2008, 320(2): 491–500. [61] Liu X D, Peng P, Ma J M, Zheng W J. Mater. Lett., 2009, 63(8): 673–675. [62] Washington A L, Strouse G F. Chem. Mater., 2009, 21(13): 2770–2776. [63] Zhu J J, Xu S, Wang H, Zhu J M, Chen H Y. Adv. Mater., 2003, 15(2): 156-159. [64] Qiao Z P, Xie Y, Huang J X, Zhu Y J, Qian Y T. Radiation Phys. Chem., 2000, 58(3): 287-292. [65] Hu Y, Chen J F, Chen W M, Ning J Q. Mater. Lett., 2004, 58(22-23): 2911–2913. [66] Schumacher W, Nagy A, Waldman W J, Dutta P K. J. Phys. Chem. C, 2009, 113(28): 12132–12139. [67] 谢毅(Xie Y), 无机化学学报(Chinese Journal of Inorganic Chemistry), 2002, 18(1): 1-7. [68] 刘欢(Liu H), 翟锦(Zhai J), 江雷(Jiang L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2006, 22(4): 587-597. [69] 董红星(Dong H X), 杨振(Yang Z), 杨文玉(Yang W Y), 尹文艳(Yin W Y), 宋玉哲(Song Y Z), 杨合情(Yang H Q).化学进展(Progress in Chemistry), 2006, 18(12): 1608-1614. [70] Kim M R, Park S Y, Jang D J. Adv. Funct.Mater., 2009, 19(24): 3910-3916. [71] Son J S, Wen X D, Joo J, Chae J, Baek S, Park K, Kim J H, An K, Yu J H, Kwon S G, Choi S -H, Wang Z W, Kim Y -W, Kuk Y, Hoffmann R, Hyeon T. Angew. Chem. Inter. Ed., 2009, 48(37): 6861-6864 [72] 郭应臣(Guo Y C), 卓立宏(Zhuo L H), 黄群增(Huang Q Z), 赵一阳(Zhao Y Y).无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24(8): 1316-1319. [73] Gattas-Asfura K M, Constantine C A, Lynn M J, Thimann D A, Ji X J, Leblanc R M. J. Am. Chem. Soc., 2005, 127(42): 14640-14646.

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[10] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[11] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[12] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[13] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[14] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[15] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
阅读次数
全文


摘要

特殊形貌CdSe纳米晶的制备*