English
新闻公告
More
化学进展 2010, Vol. 22 Issue (10): 1892-1900 前一篇   后一篇

• 综述与评论 •

常压干燥制备二氧化硅气凝胶*

吴国友1  程璇1,2**   余煜玺1,2   张颖1,2   

  1. (1.厦门大学材料学院,材料科学与工程系,厦门 361005;2.福建省特种先进材料重点实验室,厦门 361005)
  • 收稿日期:2010-02-04 修回日期:2010-05-12 出版日期:2010-10-24 发布日期:2010-10-20
  • 通讯作者: 程璇 E-mail:xcheng@xmu.edu.cn
  • 基金资助:

    国家自然科学基金;福建省自然科学基金

Preparation of Silica Aerogels via Ambient Pressure Drying

Wu Guoyou1  Cheng Xuan1, 2**   YU Yuxi1, 2   Zhang Ying1, 2   

  1. (1. Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen F J 361005, China; 2. Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen F J 361005, China)
  • Received:2010-02-04 Revised:2010-05-12 Online:2010-10-24 Published:2010-10-20
  • Contact: Cheng Xuan E-mail:xcheng@xmu.edu.cn

二氧化硅气凝胶是典型的纳米多孔轻质材料,由于具有独特的性能并在许多领域存在潜在的应用价值而受到广泛关注。二氧化硅气凝胶的制备传统上采用超临界干燥工艺,但此工艺成本高、工艺复杂而且具有一定的危险性。为了实现二氧化硅气凝胶的大批量生产和商品化应用,研究低成本常压干燥制备技术非常必要。目前常压干燥制备工艺已取得了较大进展,本文主要介绍了二氧化硅气凝胶的常压干燥制备方法及其特点,并概述了二氧化硅气凝胶复合材料制备的最新研究进展。以纤维和聚和物为增强体的二氧化硅气凝胶复合材料改善了气凝胶的力学性能,进一步扩宽了其应用范围。

Silica aerogels are the lightest materials with a typical interconnected nanostructure. They have received much attention due to their extraordinary properties and their potential applications in many fields. Conventionally silica aerogels have been made by supercritical drying process which is complicated, expensive and unsafe to a certain extent. In order to promote the production of silica aerogels on a large scale and for commercial applications, it is urgently necessary to probe the preparing technique of silica aerogels via ambient pressure drying at a reasonable cost. In recent years, significant developments in the ambient pressure drying technique have been obtained. This article gives an overview of the recent research progresses in preparation methods of silica aerogels via ambient pressure drying technique and the most updated information in preparation of silica aerogel composite materials. Silica aerogel composite materials reinforced by fiber and polymer improve the mechanical properties and further widening the application areas of silica aerogels.

Contents
1 Introduction
2 Drying methods
2.1 Drying principle
2.2 Supercritical drying technique
2.3 Ambient pressure drying technique
3 Studies in silica aerogel composites
3.1 Silica aerogel composites reinforced by fibers
3.2 Silica aerogel composites reinforced by polymers
4 Summarization

()

[1 ] Nicola H,Ulrich S. Angew. Chem. Int. Ed. ,1998,37 ( 1 /
2) : 22—45
[2 ] Dorcheh A S,Abbasi M H. J. Mater. Process. Tech. ,2008,
199 (1 /3) : 10—26
[3 ] Fricke J,Emmerling A. J. Sol-Gel Sci. Tech. ,1998,13 (1) :
299—303
[4 ] Schmidt M,Schwertfeger F. J. Non-Cryst. Solids,1998,225
(1) : 364—368
[5 ] Cantin M,Casse M,Koch L,Jouan R,Mestreau P,Roussel D,
Bonnin F,Moutel J,Teichner S J. Nucl. Instrm. Methods,
1974,118 (1) : 177—182
[6 ] Morris C A,Anderson M L,Stroud R M,Merzbacher C I,
Rolison D R. Science,1999,284 (5414) : 622—624
[7 ] Gauthier B M,Bakrania S D,Anderson A M,Carroll M K. J.
Non-Cryst. Solids,2004,350: 238—243
[8 ] Tewari P H,Lofftus K D,Hunt A J. in Structure and chemistry
of sol-gel derived transparent silica aerogel. The 2ed International
Conference on Ultrastructure Processing of Ceramics,Glasses and
Composites, Florida, 1985. New York: Wiley Interscience
Publications,1985. 17—18
[9 ] 史非( Shi F) ,王立久(Wang L J) ,刘敬肖( Liu J X) ,曾淼
( Zeng M ) . 无机化学学报( Chinese Journal of Inorganic
Chemistry) ,2005,21 (11) : 1632—1636
[10] Rao A V,Kulkarni M M,Amalnerkar D P,Seth T. Appl. Surf.
Sci. ,2003,206 (1 /4) : 262—270
[11] Land V D,Harris T M,Teeters D C. J. Non-Cryst. Solids,
2001,283 (1 /3) : 11—17
[12] Lenza R F S,Vasconcelos W L. J. Non-Cryst. Solids,2003,
330 (1 /3) : 216—225
[13] Rao A V,Kulkarni M M. Mater. Chem. Phys. ,2003,77 (3) :
819—825
[14] Shajesh P,Smitha S,Aravind P R,Warrier K G K. J. Colloid
Interface Sci. ,2009,336 (2) : 691—697
[15] Einarsrud M A,Nilsen E. J. Non-Cryst. Solids,1998,226 (1 /
2) : 122—128
[16] Rolison D R,Dunn B. J. Mater. Chem. ,2001,11 ( 4 ) :
963—980
[17] Haereid S,Dahle M,Lima S,Einarsrud M A. J. Non-Cryst.
Solids,1995,186: 96—103
[18] Haereid S,Nilsen E,Einarsrud M A. J. Non-Cryst. Solids,
1996,204 (3) : 228—234
[19] Haereid S,Anderson J,Einarsrud M A,Hua D W,Smith D M.
J. Non-Cryst. Solids,1995,185 (3) : 221—226
[20] He F,Zhao H,Qu X,Zhang C,Qiu W. J. Mater. Process.
Tech. ,2009,209 (3) : 1621—1626
[21] Schwertfeger F,Frank D,Schmidt M. J. Non-Cryst. Solids,
1998,225 (1) : 24—29
[22] Prakash S S,Brinker C J,Hurd A J. J. Non-Cryst. Solids,
1995,190 (3) : 264—275
[23] Deshpande R,Hua D W,Smith D M,Brinker C J. J. Non-
Cryst. Solids,1992,144: 32—44
[24] Ziegler B,Gerber T. US 6017505,2000
[25] Kang S K,Choi S Y. J. Mater. Sci. ,2000,35 (19) : 4971—
4976
[26] Kwon Y G,Choi S Y,Kang E S,Baek S S. J. Mater. Sci. ,
2000,35 (24) : 6075—6079
[27] Wei T Y,Chang T F,Lu S Y,Chang Y C. J. Am. Ceram.
Soc. ,2007,90 (7) : 2003—2007
[28] Rao A P,Rao A V,Pajonk G M. Appl. Surf. Sci. ,2007,253
(14) : 6032—6040
[29] Hwang S W,Jung H H,Hyun S H,Ahn Y S. J. Sol-Gel Sci.
Tech. ,2007,41 (2) : 139—146
[30] Lee C J,Kim G S,Hyun S H. J. Mater. Sci. ,2002,37 (11) :
2237—2241
[31] Shi F,Wang L J,Liu J X. Mater. Lett. ,2006,60 (29 /30 ) :3718—3722
[32] Wang L J,Zhao S Y,Yang M. Mater. Chem. Phys. ,2009,
113 (1) : 485—490
[33] Bhagat S D,Kim Y H,Suh K H,Ahn Y S,Yeo J G,Han J H.
Micropor. Mesopor. Mat. ,2008,112 (1 /3) : 504—509
[34] Gurav J L,Rao A V,Rao A P,Nadargi D Y,Bhagat S D. J.
Alloys Compd. ,2009,476 (1 /2) : 397—402
[35] Rao A V,Kulkarni M M,Amalnerkar D P,Seth T. J. Non-
Cryst. Solids,2003,330 (1 /3) : 187—195
[36] Rao A V,Bhagat S D,Hirashima H,Pajonk G M. J. Colloid
Interface Sci. ,2006,300 (1) : 279—285
[37] Bhagat S D,Oh C S,Kim Y H,Ahn Y S,Yeo J G. Micropor.
Mesopor. Mat. ,2007,100 (1 /3) : 350—355
[38] Bhagat S D,Kim Y H,Ahn Y S,Yeo J G. Appl. Surf. Sci. ,
2007,253 (6) : 3231—3236
[39] Bhagat S D,Kim Y H,Moon M J,Ahn Y S,Yeo J G. Solid
State Sci. ,2007,9 (7) : 628—635
[40] Bhagat S D,Kim Y H,Ahn Y S,Yeo J G. Micropor. Mesopor.
Mat. ,2006,96 (1 /3) : 237—244
[41] Rao A V,Wagh P B. Mater. Chem. Phys. ,1998,53 ( 1 ) :
13—18
[42] Schwertfeger F,Glaubitt W,Schubert U. J. Non-Cryst. Solids,
1992,145: 85—89
[43] 吴国友(Wu G Y) ,余煜玺(Yu Y X) ,程璇( Cheng X) ,张颖
( Zhang Y ) . 硅酸盐学报( Journal of the Chinese Ceramic
Society) ,2009,37(7) : 1206—1211
[44] Frank D,Thonnessen F,Zimmermann A. US 5786059,1998
[45] Karout A,Buisson P,Perrard A,Pierre A. J. Sol-Gel Sci.
Tech. ,2005,36 (2) : 163—171
[46] Kim G S,Hyun S H. J. Mater. Sci. ,2003,38 (9 ) : 1961—
1966
[47] Ryu J. US 6068882,2000
[48] Coronado P R,Poco J F. US 6087407,2000
[49] Paik J A, Sakamoto J, Jones S. Improved Silica Aerogel
Composite Materials. (2008-09-01 ) . http: / /www. techbriefs.
com / component / content / article /3125
[50] Stein A,Melde B J,Schroden R C. Adv. Mater. ,2000,12
(19) : 1403—1419
[51] Stein A. Adv. Mater. ,2003,15 (10) : 763—775
[52] Fidalgo A,Farinha J P S,Martinho J M G,Rosa M E,Ilharco L
M. Chem. Mater. ,2007,19 (10) : 2603—2609
[53] Mulik S,Sotiriou-Leventis C,Churu G,Lu H,Leventis N.
Chem. Mater. ,2008,20 (15) : 5035—5046
[54] Katti A,Shimpi N,Roy S,Lu H,Fabrizio E F,Dass A,
Capadona L A,Leventis N. Chem. Mater. ,2005,18 ( 2 ) :
285—296
[55] Capadona L A,Meador M A B, Alunni A, Fabrizio E F,
Vassilaras P,Leventis N. Polymer,2006,47 ( 16 ) : 5754—
5761
[56] Meador M A B,Fabrizio E F,Ilhan F,Dass A,Zhang G,
Vassilaras P,Johnston J C,Leventis N. Chem. Mater. ,2005,
17 (5) : 1085—1098
[57] Capadona L A,Meador M A B. X-Aerogel Processing Time
Reduced by One-Pot Synthesis. ( 2007-12-14 ) . http: / /www.
grc. nasa. gov /WWW/RT /2006 /RX /RX20P-capadona1. html
[58] Casas L,Roig A,Rodriguez E,Molins E,Tejada J,Sort J. J.
Non-Cryst. Solids,2001,285 (1 /3) : 37—43
[59] Tamon H,Sone T,Mikami M,Okazaki M. J. Colloid Interface
Sci. ,1997,188 (2) : 493—500
[60] Deng Z,Wang J,Zhang Y,Weng Z,Zhang Z,Zhou B,Shen
J,Cheng L. Nanostr. Mater. ,1999,11 (8) : 1313—1318
[61] Carta D,Corrias A,Mountjoy G,Navarra G. J. Non-Cryst.
Solids,2007,353 (18 /21) : 1785—1788

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[9] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[10] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[13] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[14] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[15] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
阅读次数
全文


摘要

常压干燥制备二氧化硅气凝胶*