English
新闻公告
More
化学进展 2010, Vol. 22 Issue (10): 1882-1900 前一篇   后一篇

• 综述与评论 •

氧化锰基催化剂低温NH3选择性还原NOx反应及其机理*

孙 亮1,2   许悠佳2   曹青青2   胡冰清2   王 超2   荆国华1* *   

  1. (1. 华侨大学化工学院 厦门 361021; 2. 复旦大学环境科学与工程系 上海 200433)
  • 收稿日期:2010-02-05 修回日期:2010-04-12 出版日期:2010-10-24 发布日期:2010-10-20
  • 通讯作者: 荆国华 E-mail:zhoujing@hqu.edu.cn
  • 基金资助:

    国家自然科学基金;上海市自然科学基金;教育部博士点基金

Reaction and Mechanism of Low-Temperature Selective Catalytic Reduction of NOx by NH3 over Manganese Oxide-based Catalysts

Sun Liang1,2   Xu Youjia2   Cao Qingqing2   Hu Bingqing2   Wang Chao2   Jing Guohua1* *   

  1. (1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; 2. Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)
  • Received:2010-02-05 Revised:2010-04-12 Online:2010-10-24 Published:2010-10-20
  • Contact: Jing Guohua E-mail:zhoujing@hqu.edu.cn

近年来,氧化锰基催化剂由于在低温氨选择性催化还原(NH3-SCR)NOx反应中表现出优良的催化活性得到了广泛的关注。本文综述了氧化锰基催化剂低温NH3-SCR反应的研究进展,分别分析了氧化锰的氧化态、晶体结构和表面结构以及掺杂离子和载体类型等因素对其催化性能的影响:高的氧化态的锰和高比表面积的催化剂有利于低温NH3-SCR反应;金属离子如铈、铬、铁、铜和锡等的掺杂可以提高NOx的转化率和/或N2选择性;具有独特性能的载体如TiO2或硅铝分子筛等可以进一步提高氧化锰基催化剂的抗湿和抗硫性能等。本文同时分别对活化NH3、NO或同时活化NO和NH3的低温NH3-SCR反应机理进行了详细总结, 根据不同的反应条件,在氧化锰基催化剂上很多低温NH3-SCR反应,Eley-Rideal、Langmuir-Hinshelwood以及Mars-van Krevelen 机理可能是同时存在的。本文最后论证和指出了氧化锰基催化剂低温NH3-SCR反应研究的主要发展方向。

More attention to manganese oxide-based catalysts has been paid due to their excellent catalytic activities in low-temperature selective catalytic reduction of NOx by NH3 (NH3-SCR) in recent years. The progress of low-temperature NH3-SCR on manganese oxide-based catalysts is reviewed in this paper. The effects of oxidation states, bulk and surface structures of manganese oxides together with the nature of the doping cations and the supports on catalytic activities are extensively analyzed, and according to these results, the general conclusions can be drawn that both higher oxidation state of manganese and higher surface areas favor for the reaction of NH3-SCR at low temperatures, the doping cations such as Ce4+, Cr3+, Fe3+, Cu2+ and Sn4+ can enhance NOx conversion and/or N2 selectivity of manganese oxide-based catalysts in low-temperature NH3-SCR, and the supports with excellent features like TiO2 and silicon-aluminum zeolites can facilitate the improvements of hydrophobic ability and sulfur-resistant performance. Meanwhile, the mechanisms of low-temperature NH3-SCR according to activations of NH3 and NO alone or both are systematically discussed, and depending on the reaction conditions, Eley-Rideal and Langmuir-Hinshelwood mechanisms as well as Mars-van Krevelen one possibly simultaneously occur in low-temperature NH3-SCR reactions over manganese oxide-based catalysts. Finally, the general proposal for developing high active manganese oxide-based catalysts in low-temperature NH3-SCR is put forward.

Contents
1. Introduction
2. Manganese oxide-based catalysts for low-temperature NH3-SCR
2.1 Unsupported manganese oxide-based catalysts
2.2 Supported manganese oxide-based catalysts
3. Mechanisms of low-temperature NH3-SCR on manganese oxide-based catalysts
3.1 Eley-Rideal mechanism
3.2 Langmuir-Hinshelwood mechanism
4. Conclusions and prospect

()

[1 ] Fritz A,Pitchon V. Appl. Catal. B,1997,13: 1—25
[2 ] 郝吉明(Hao J M) ,马广大(Ma G D) . 大气污染控制工程,
第二版( Air Pollution Control Engineering,2nd ed. ) . 北京:
高等教育出版社( Beijing: Higher Education Press) ,2002. 354
[3 ] 滕加伟( Teng J W) ,宋庆英( Song Q Y) ,于岚(Yu L) ,卢文
奎( Lu W K) ,陈庆龄( Chen Q L) . 环境污染治理技术与设
备( Techniques and Equipment for Environmental Pollution
Control) ,2000,l(1) : 38—45
[4 ] Busca G,Lietti L,Ramis G,Berti F. Appl. Catal. B,1998,
18: 1—36
[5 ] Qi G,Yang R T. Chem. Commun. ,2003,(7) : 848—849
[6 ] Kang M,Kim D J,Park E D,Kim J M,Yie J E,Kim S H,
Hope-Weeks L,Eyring E M. Appl. Catal. B,2006,68: 21—
27
[7 ] Pena D A,Uphade B S,Smirniotis P G. J. Catal. ,2004,221:
421—431
[8 ] Smirniotis P G,Pena D A,Uphade B S. Angew. Chem. Int.
Ed. ,2001,40: 2479—2481
[9 ] Kapteijn F, Singoredjo L,Andreini A,Moulijn J A. Appl.
Catal. B,1994,3: 173—189
[10] Sreekanth P M,Pena D A,Smirniotis P G. Ind. Eng. Chem.
Res. ,2006,45: 6444—6449
[11] Smirniotis P G,Sreekanth P M,Pena D A,Jenkins R G. Ind.
Eng. Chem. Res. ,2006,45: 6436—6443
[12] Thackeray M M. Prog. Solid. State. Ch. ,1997,25: 1—71
[13] Luo J,Zhang Q H,Martinez J G,Suib S L. J. Am. Chem.
Soc. ,2008,130: 3198—3207
[14] Tang X L,Hao J M,Xu W G,Li J H. Catal. Commun. ,2007,
8: 329—334
[15] Kang M,Park E D,Kim J M,Yie J E. Appl. Catal. A,2007,
327: 261—269
[16] Kang M,Yeon T H,Park E D,Yie J E,Kim J M. Catal.
Lett. ,2006,106: 77—80
[17] Park T S,Jeong S K,Hong S H,Hong S C. Ind. Eng. Chem.
Res. ,2001,40: 4491—4495
[18] 张治安( Zhang Z A) ,杨邦朝( Yang B C) ,邓梅根( Deng M
G) ,胡永达(Hu Y D) ,汪斌华(Wang B H) . 化学学报(Acta
Chimica Sinica) ,2004,62(17) : 1617—1620
[19] Imamura S. Ind. Eng. Chem. Res. ,1999,38: 1743—1753
[20] Qi G,Yang R T. J. Phys. Chem. B,2004,108: 15738—
15747
[21] Qi G,Yang R T,Chang R. Appl. Catal. B,2004,51: 93—
106
[22] Qi G,Yang R T. J. Catal. ,2003,217: 434—441
[23] Eigenmann F,Maciejewski M, Baiker A. Appl. Catal. B,
2006,62: 311—318
[24] 唐晓龙( Tang X L) ,郝吉明( Hao J M) ,徐文国( Xu W G) ,
李俊华( Li J H) . 催化学报( Chin. J. Catal. ) ,2006,27
(10) : 843—848
[25] Casapu M,Krocher O,Elsener M. Appl. Catal. B,2009,88:
413—419
[26] Tanabe K. Catal. Today,2003,78: 65—77
[27] Ziolek M. Catal. Today,2003,78: 47—64
[28] Chen Z H,Li X H,Gao X,Jiang Y B,Lu Y X,Wang F R,
Wang L F. Chin. J. Catal. ,2009,30: 4—6
[29] Long R Q,Yang R T,Chang R. Chem. Commun. ,2002,
(5) : 452—453
[30] Kang M,Park E D,Kim J M,Yie J E. Catal. Today,2006,
111: 236—241
[31] Tang X F,Li J H,Wei L S,Hao J M. Chin. J. Catal. ,2008,
29: 531—536
[32] Kijlstra W S,Brands D S,Smit H I,Poels E K,Bliek A. J.
Catal. ,1997,171: 219—230
[33] Valdés-Solis T,Marbán G,Fuertes A B. Catal. Today,2001,
69: 259—264
[34] Sreekanth P M,Smirniotis P G. Catal. Lett. ,2008,122: 37—
42
[35] Jiang B Q,Liu Y,Wu Z B. J. Hazard. Mater. ,2009,162:
1249—1254
[36] Li J H,Chen J J,Ke R,Luo C K,Hao J M. Catal. Commun. ,
2007,8: 1896—1900
[37] Wu Z B,Jiang B Q,Liu Y,Zhao W R,Guan B H. J. Hazard.
Mater. ,2007,145: 488—494
[38] Wu Z B,Jiang B Q,Liu Y,Wang H Q,Jin R B. Environ. Sci.
Technol. ,2007,41: 5812—5817
[39] Duffy B L,Curryhyde H E,Cant N W,Nelson P F. J. Catal. ,
1995,154: 107—114
[40] Curry-Hyde E,Baiker A. Ind. Eng. Chem. Res. ,1990,29:
1985—1989
[41] Bosch H,Janssen F J J G,van den Kerkhof F M G,Oldenziel J,
van Ommen J G,Ross J R H. Appl. Catal. ,1986,25 (1 /2 ) :
239
[42] Stevenson S A,Vartuli J C,Brooks C F. J. Catal. ,2000,190:
228—239
[43] Qi G S,Yang R T. Appl. Catal. B,2003,44: 217—225
[44] Huang H Y,Yang R T. Langmuir,2001,17: 4997—5003
[45] Koebel M, Elsener M,Madia G. Ind. Eng. Chem. Res. ,
2001,40: 52—59
[46] Notoya F,Su C L,Sasaoka E,Nojima S. Ind. Eng. Chem.
Res. ,2001,40: 3732—3739
[47] Wu Z B,Jiang B Q,Liu Y. Appl. Catal. B,2008,79: 347—
355
[48] Komatsu T,Tomokuni K,Yamada I. Catal. Today,2006,116:
244—249
[49] Zhang J F, Huang Y, Chen X. Journal of Natural Gas
Chemistry,2008,17: 273—277
[50] Huang J H,Tong Z Q,Huang Y,Zhang J F. Appl. Catal. B,
2008,78: 309—314
[51] Singoredjo L,Korver R,Kapteijn F,Moulijn J. Appl. Catal.
B,1992,1: 297—316
[52] Kapteijn F,Singoredjo L,Vandriel M,Andreini A,Moulijn J
A,Ramis G,Busca G. J. Catal. ,1994,150: 105—116
[53] Kijlstra W S,Daamen J C M L,van de Graaf J M,van der
Linden B,Poels E K,Bliek A. Appl. Catal. B,1996,7:
337—357
[54] Kijlstra W S,Biervliet M,Poels E K,Bliek A. Appl. Catal. B,
1998,16: 327—337
[55] Armor J N. Catal. Today,1995,26: 147—158
[56] Qi G,Yang R T,Chang R. Catal. Lett. ,2003,87: 67—71
[57] Carja G,Kameshima Y,Okada K,Madhusoodana C D. Appl.
Catal. B,2007,73: 60—64
[58] Marbán G,Antuna R,Fuertes A B. Appl. Catal. B,2003,41:
323—338
[59] Yoshikawa M,Yasutake A,Mochida I. Appl. Catal. A,1998,
173: 239—245
[60] Tang X L,Hao J M,Yi H H,Li J H. Catal. Today,2007,
126: 406—411
[61] Amores J M G,Escribano V S,Ramis G,Busca G. Appl.
Catal. B,1997,13: 45—58
[62] Liang X,Li J H,Lin Q C,Sun K Q. Catal. Commun. ,2007,
8: 1901—1904
[63] Topsoe N Y,Topsoe H,Dumesic J A. J. Catal. ,1995,151:
226—240
[64] Topsoe N Y. Science,1994,265: 1217—1219
[65] 李云涛( Li Y T) ,钟秦( Zhong Q) . 化学进展( Progress in
Chemistry) ,2009,21(6) : 1094—1100
[66] Zhao Q S,Xiang J,Sun L S,Shi J M,Su S,Hu S. J. Cent.
South. Univ. Technol. ,2009,16: 513—519
[67] Kijlstra W S,Brands D S,Poels E K,Bliek A. Catal. Today,
1999,50: 133—140
[68] Kijlstra W S,Brands D S,Poels E K,Bliek A. J. Catal. ,
1997,171: 208—218
[69] Marbán G,Valdés-Solís T,Fuertes A B. J. Catal. ,2004,226:
138—155
[70] Marbán G,Valdés-Solís T,Fuertes A B. Phys. Chem. Chem.
Phys. ,2004,6: 453—464
[71] Eng J,Bartholomew C H. J. Catal. ,1997,171: 14—26
[72] Yamashita T,Vannice A. Appl. Catal. B,1997,13: 141—155
[73] Kantcheva M. J. Catal. ,2001,204: 479—494
[74] Richter M,Trunschke A,Bentrup U,Brzezinka K W,Schreier
E,Schneider M,Pohl M M,Fricke R. J. Catal. ,2002,206:
98—113
[75] Marbán G,Fuertes A B. Catal. Lett. ,2002,84: 13—19
[76] Salker A V,Weisweiler W. Appl. Catal. A,2002,203: 221—
229
[77] Koebel M,Madia G,Raimondi F,Wokaun A. J. Catal. ,2002,
209: 159—165
[78] Luo J,Zhang Q H,Huang A M,Suib S L. Micropor. Mesopor.
Mat. ,2000,35 /36: 209—217
[79] Abecassis-Wolfovich M, Jothiramalingam R, Landau M V,
Herskowitz M,Viswanathan B,Varadarajan T K. Appl. Catal.
B,2005,59: 91—98
[80] Tang X F,Huang X M,Shao J J,Liu J L,Li Y G,Xu Y D,
Shen W J. Chin. J. Catal. ,2006,27: 97—99

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[5] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 李连欣, 曹冉冉, 张彭义. 室温催化分解空气中臭氧污染物[J]. 化学进展, 2021, 33(7): 1188-1200.
[8] 曾小珊, 单传家, 孙铭第, 何陶宏, 荣少鹏. 二氧化锰催化分解室内空气中甲醛的研究[J]. 化学进展, 2021, 33(12): 2245-2258.
[9] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[10] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[11] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[12] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[13] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[14] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[15] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.