English
新闻公告
More
化学进展 2009, Vol. 21 Issue (10): 2219-2228 前一篇   后一篇

• 综述与评论 •

硼氢化钠催化水解制氢*

梁艳;王平;戴洪斌**   

  1. ( 中国科学院金属研究所 沈阳材料科学国家(联合)实验室  沈阳 110016 )
  • 收稿日期:2008-10-29 修回日期:2008-11-17 出版日期:2009-10-24 发布日期:2009-10-09
  • 通讯作者: 戴洪斌 E-mail:hbdai@imr.ac.cn
  • 基金资助:

    863项目;中科院创新工程

Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride Solution

Liang Yan;  Wang Ping;  Dai Hongbin**   

  1. (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyan 110016, China)
  • Received:2008-10-29 Revised:2008-11-17 Online:2009-10-24 Published:2009-10-09
  • Contact: Dai Hongbin E-mail:hbdai@imr.ac.cn

硼氢化钠(NaBH4)催化水解制氢是一项具备车载氢源应用前景的储氢/制氢一体化技术。本文介绍了该技术催化水解制氢的原理,综述了制氢催化剂、反应动力学、反应机理、反应装置的设计和反应副产物回收利用的最新研究进展,讨论了该技术研发中需解决的问题。水解制氢系统的实际应用需研发高效、耐久性负载型催化剂。制氢装置的设计应考虑反应热的综合利用、燃料电池产生的水循环利用及膜分离技术的应用。NaBH4的高效再生将降低其生产成本,实现NaBH4基水解制氢系统的商业化应用。

Hydrogen generation (HG) from catalytic hydrolysis of sodium borohydride (NaBH4) solution is a promising integrated technology for on-board hydrogen storage/generation. In this perspective, we present the principle of HG from NaBH4 solution, and review the current progresses in catalysts, reaction kinetics, reaction mechanism, design of reaction generator and recycle of hydrolysis production, and then discuss some remaining problems in the development of NaBH4-based HG system. Supported catalyst with high-activity and durability is desirable in developing the HG system for practical application. The design of hydrogen generator should focus on the utilization of reaction heat to preheat fuel, the recycle of water from the fuel cell and the technology of separation by the membrane. The highly efficient regeneration of NaBH4 can reduce its cost, thus promoting the commercial applications of the NaBH4-based HG system.

Contents
1 Introduction
2 The current status and progress of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.1 The principle of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.2 The development of catalyst of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.3 Study of reaction kinetics of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.4 Study of reaction mechanism of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.5 Design of reaction generator of hydrogen generation from catalytic hydrolysis of NaBH4 solution
2.6 Regeneration of NaBH4 from the hydrolysis production (NaBO2)
3 Conclusion and outlook

中图分类号: 

()

[ 1 ]  Schlapbach L , Züttel A. Nature , 2001 , 414 (6861) : 353 —358
[ 2 ]  Satyapal S , Petrovic J , Read C , et al . Catal . Today , 2007 , 120 (3/4) : 246 —256
[ 3 ]  Orimo S , Nakamori Y, Eliseo J R , et al . Chem. Rev. , 2007 , 107(10) : 4111 —4132
[ 4 ]  Ross D K. Vacuum , 2006 , 80 (10) : 1084 —1089
[ 5 ]  Kong V C Y, Foulkes F R , Kirk D W, et al . Int . J . Hydrogen Energy , 1999 , 24 (7) : 665 —675
[ 6 ]  Kong V C Y, Kirk D W, Foulkes F R , et al . Int . J . Hydrogen Energy , 2003 , 28 (2) : 205 —214
[ 7 ]  Wang P , Kang X D. Dalton Trans. , 2008 , (40) : 5400 —5413
[ 8 ]  Schlesinger H I , Brown H C. US 2461661 , 1949
[ 9 ]  Urgnani J , Torres F J , Palumbo M, et al . Int . J . Hydrogen Energy ,2008 , 33 (12) : 3111 —3115
[10 ]  Hyde J . Chrysler Offers Fuel Cell Van with Soapy Twist . Reuters World Environment News , ( 2001-12-12 ) [ 2008-10-01 ] . http ://www. planetark. org-dailnewsstory. cfm-newsid-13671/story. htm
[11 ]  Schlesinger H I , Brown H C , Finholt A E , et al . J . Am. Chem.Soc. , 1953 , 75 (1) : 215 —219
[12 ]  Brown H C , Brown C A. J . Am. Chem. Soc. , 1962 , 84 (8) :1493 —1494
[13 ]  Levy A , Brown J B , Lyons CJ . Ind. Eng. Chem. , 1960 , 52 (3) :211 —214
[14 ]  Amendola S C , Sharp-Goldman S L , Janjua M S , et al . Int . J .Hydrogen Energy , 2000 , 25 (10) : 969 —975
[15 ]  Amendola S C , Sharp-Goldman S L , Janjua M S , et al . J . Power Sources , 2000 , 85 (2) : 186 —189
[16 ]  潘相敏(Pan X M) , 马建新(Ma J X) . 天然气化工(Natural Gas Chemical Industry) , 2003 , 28 (5) : 51 —55
[17 ]  Richardson B S , Birdwell J F , Pin F G, et al . J . Power Sources ,2005 , 145 (1) : 21 —29
[18 ]  Wee J H , Kim K Y. Fuel Process. Technol . , 2006 , 87 (9) : 811 —819
[19 ]  徐东彦(Xu D Y) , 张华明(Zhang H M) , 叶威(Ye W) . 化学进展(Progress in Chemistry) , 2007 , 19 (10) : 1599 —1605
[20 ]  Kaufman C M, Sen B. J . Chem. Soc. Dalton Trans. , 1985 , (2) :307 —313
[21 ]  Kreevoy MM, Jacobson R W. Ventron Alembic , 1979 , 15 : 2 —3
[22 ]  Aiello R , Sharp J H , Matthews M A. Int . J . Hydrogen Energy ,1999 , 24 (12) : 1123 —1130
[23 ]  Marrero-Alfonso E Y, Gray J R , Davis TA , et al . Int . J . Hydrogen Energy , 2007 , 32 (18) : 4717 —4722
[24 ]  Moon G Y, Lee S S , Lee K Y, et al . J . Ind. Eng. Chem. , 2008 ,14 (1) : 94 —99
[25 ]  Minkina V G, Shabunya S I , Kalinin V I , et al . Russ. J . Appl .Chem. , 2008 , 81 (3) : 380 —385
[26 ]  Ozkar S , Zahmakiran M. J . Alloy Compd. , 2005 , 404 : 728 —731
[27 ]  Demirci U B , Garin F. J . Mol . Catal . A: Chem. , 2008 , 279 (1) :57 —62
[28 ]  Zahmakiran M, ; zkar S. Langmuir , 2008 , 24 (14) : 7065 —7067
[29 ]  Kojima Y, Suzuki K, Fukumoto K, et al . Int . J . Hydrogen Energy ,2002 , 27 (10) : 1029 —1034
[30 ]  Kojima Y, Suzuki K, Fukumoto K, et al . J . Power Sources , 2004 ,125 (1) : 22 —26
[31 ]  Demirci U B , Garin F. J . Alloys Compd. , 2008 , 463 (1/2) : 107 —111
[32 ]  Pěna/Alonso R , Sicurelli A , Callone E , et al . J . Power Sources ,2007 , 165 (1) : 315 —323
[33 ]  Krishnan P , Yang T H , Lee W Y, et al . J . Power Sources , 2005 ,143 (1/2) : 17 —23
[34 ]  Krishnan P , Hsueh K L , Yim S D. Appl . Catal . B : Environ. ,2007 , 77 (1/2) : 206 —214
[35 ]  Liu B H , Li Z P , Suda S. J . Alloys Compd. , 2006 , 415 (1/2) :288 —293
[36 ]  Ingersoll J C , Mania N , Thenmozhiyal J C , et al . J . Power Sources ,2007 , 173 (1) : 450 —457
[37 ]  Wu C , Bai Y, Wu F. Mater. Lett . , 2008 , 62 (27) : 4242 —4244
[38 ]  Dong H , Yang H X, Ai X P , et al . Int . J . Hydrogen Energy ,2003 , 28 (10) : 1095 —1100
[39 ]  Jeong S U , Kim R , Cho E A , et al . J . Power Sources , 2005 , 144(1) : 129 —134
[40 ]  Lee J , Kong K Y, Jung C R , et al . Catal . Today , 2007 , 120 (3-4) : 305 —310
[41 ]  Kim S J , Lee J , Kong K Y, et al . J . Power Sources , 2007 , 170(2) : 412 —418
[42 ]  Dai H B , Liang Y, Wang P , et al . J . Power Sources , 2008 , 177(1) : 17 —23
[43 ]  Suda S , Sun Y M, Liu B H , et al . Appl . Phys. A: Mater. Sci .Process. , 2001 , 72 (2) : 209 —212
[44 ]  Zhao J , Ma H , Chen J . Int . J . Hydrogen Energy , 2007 , 32 (18) :4711 —4716
[45 ]  Xu D Y, Dai P , Liu X M, et al . J . Power Sources , 2008 , 182(2) : 616 —620
[46 ]  Patel N , Fernandes R , Gueela G, et al . Appl . Surf . Sci . , 2007 ,254 (4) : 1307 —1311
[47 ]  Liu ZL , Guo B , Chan S H , et al . J . Power Sources , 2008 , 176(1) : 306 —311
[48 ]  Liu R S , Lai H C , Bagkar N C , et al . J . Phys. Chem. B , 2008 ,112 (16) : 4870 —4875
[49 ]  Kojima Y, Suzuki K, Kawai Y. J . Power Sources , 2006 , 155 (2) :325 —328
[50 ]  KimJ H , Kim K T, Kang Y M, et al . J . Alloys Compd. , 2004 ,379 (1-2) : 222 —227
[51 ]  Hsueh CL , Chen C Y, Ku J R , et al . J . Power Sources , 2008 , 177(2) : 485 —492
[52 ]  Demirci U B , Garin F. Catal . Commun. , 2008 , 9 (6) : 1167 —1172
[53 ]  Cho KW, Kwon H S. Catal . Today , 2007 , 120 (3P4) : 298 —304
[54 ]  Mitov M, Rashkov R , Atanassov N , et al . J . Mater. Sci . , 2007 ,42 (10) : 3367 —3372
[55 ]  Patel N , Guella G, Kale A , et al . Appl . Catal . A: Gen. , 2007 ,323 : 18 —24
[56 ]  Patel N , Patton B , Zanchetta C , et al . Int . J . Hydrogen Energy ,2008 , 33 (1) : 287 —292
[57 ]  Patel N , Fernandes R , Guella G, et al . J . Phys. Chem. C , 2008 ,112 (17) : 6968 —6976
[58 ]  王涛(Wang T) , 张熙贵(Zhang X G) , 李巨峰(Li J F) 等. 燃料化学学报(Journal of Fuel Chemistry and Technology) , 2004 , 32(6) :723 —728
[59 ]  Walter J C , Zurawski A , Montgomery D , et al . J . Power Sources ,2008 , 179 (1) : 335 —339
[60 ]  Wu C , Wu F , Bai Y, et al . Mater. Lett . , 2005 , 59 (14-15) :1748 —1751
[61 ]  Dai H B , Liang Y, Wang P , et al . Int . J . Hydrogen Energy , 2008 ,33 (16) : 4405 —4412
[62 ]  Bai Y, Wu C , Wu F , et al . Mater. Lett . , 2006 , 60 (17-18) :2236 —2239
[63 ]  Demirci U B , Garin F. Int . J . Green Energy , 2008 , 5 (3) : 148 —156
[64 ]  Corma A. Chem. Rev. , 1997 , 97 (6) : 2373 —2419
[65 ]  李文震(Li W Z) , 孙公权(Sun G Q) , 严玉山( Yan Y S) 等.化学进展(Progress in Chemistry) , 2005 , 17 (5) : 761 —772
[66 ]  李贺(Li H) , 姚素薇(Yao S W) , 张卫国(Zhang W G) 等. 化工进展(Chemical Industry and Engineering Progress) , 2005 , 24(7) : 718 —722
[67 ]  Liang J , Li L , Huang Y, et al . Int . J . Hydrogen Energy , 2008 , 33(15) : 4048 —4054
[68 ]  王书明(Wang S M) , 蒋利军(Jiang L J ) , 刘晓鹏(Liu X P)等. 电源技术(Chinese Journal of Power Sources) ,2006 , 30 (9) :707 —712
[69 ]  Pozio A , De Francesco M, Monteleone G, et al . Int . J . Hydrogen Energy , 2008 , 33 (1) : 51 —56
[70 ]  Zahmakiran M, ; zkar S. J . Mol . Catal . A: Chem. , 2006 , 258 (1/2) : 95 —103
[71 ]  Guella G, Patton B , Miotello A. J . Phys. Chem. C , 2007 , 111(50) : 18744 —18750
[72 ]  Shang Y, Chen R. Energy Fuels , 2006 , 20 (5) : 2149 —2154
[73 ]  Zhang Q L , Wu Y, Sun X L , et al . Ind. Eng. Chem. Res. , 2007 ,46 (4) : 1120 —1124
[74 ]  Ye W, Zhang H M, Xu D Y, et al . J . Power Sources , 2007 , 164(2) : 544 —548
[75 ]  Zhang J S , Delgass WN , Fishe T S , et al . J . Power Sources , 2007 ,164 (2) : 772 —781
[76 ]  Hung A J , Tsai S F , Hsu Y Y. Int . J . Hydrogen Energy , 2008 , 33(21) : 6205 —6215
[77 ]  Dai H B , Liang Y, Ma L P , et al . J . Phys. Chem. C , 2008 , 112(40) : 15886 —15892
[78 ]  赵鹏程(Zhao P C) , 谢自立(Xie Z L) , 杨子芹(Yang Z Q) 等.电源技术(Chinese Journal of Power Sources) , 2007 , 31 (12) :988 —990
[79 ]  Shang Y, Chen R. Energy Fuels , 2006 , 20 (5) : 2142 —2148
[80 ]  Amendola S C , Binder M, Sharp-Goldman S , et al . US 6683025B2 ,2004
[81 ]  Shang Y, Chen R , Jiang G. Int . J . Hydrogen Energy , 2008 , 33(22) : 6719 —6726
[82 ]  Holbrook KA ,Twist P J . J . Chem. Soc. A , 1971 , 890 —894
[83 ]  Guella G, Zanchetta C , Patton B , et al . J . Phys. Chem. B , 2006 ,110 (34) : 17024 —17033
[84 ]  Homma T, Nakai H , Onishi M, et al . J . Phys. Chem. B , 1999 ,103 (10) : 1774 —1778
[85 ]  Homma T, Tamaki A , Nakai H , et al . J . Electroanal . Chem. ,2003 , 559 : 131 —136
[86 ]  Li H X, Li H , Dai WL , et al . Appl . Catal . A , 2003 , 238 (1) :119 —130
[87 ]  Wu Y. Process for the Regeneration of Sodium Borate to Sodium Borohydride for Use as a Hydrogen Storage Source , DOE Hydrogen Program: FY 2005 Annual Progress Report , 2005 ( 2005-01-01) ,[ 2008-10-01 ] . http://www.hydrogen.energy.gov/annual-review05-storage.html
[88 ]  Wu Y. Development of Advanced Chemical Hydrogen Storage and Generation System , DOE Hydrogen Program: 2005 Annual Merit Review Proceedings Hydrogen Storage , [ 2008-10-01 ] . http://www.hydrogen.energy.gov/annual-review05-storage.html
[89 ]  Zhang J S , Zheng Y, Gore J P , et al . J . Power Sources , 2007 , 165(2) : 844 —853
[90 ]  Zhang J S , Zheng Y, Gore J P , et al . J . Power Sources , 2007 , 170(1) : 150 —159
[91 ]  Zhang Q , Smith G, Wu Y, et al . Int . J . Hydrogen Energy , 2006 ,31 (7) : 961 —965
[92 ]  Zhang Q , Smith G M, Wu Y. Int . J . Hydrogen Energy , 2007 , 32(18) : 4731 —4735
[93 ]  Bayer A G. BP 871569 , 1964
[94 ]  Kojima Y, Haga T. Int . J . Hydrogen Energy , 2003 , 28 (9) : 989 —993
[95 ]  Li Z P , Morigazaki N , Suda S , et al . J . Alloy Compd. , 2003 , 349(1/2) : 232 —236
[96 ]  Cooper B H. US 3734842-A , 1973
[97 ]  Hale C H , Sharifan H. US 4931154-A , 1989
[98 ]  Macdonald D D , Colominas S , Tokash J , et al . Electrochemical Hydrogen Storage Systems , DOE Hydrogen Program: FY 2007 Annual Progress Report , ( 2007-10-18 ) . [ 2008-10-01 ] . http://www.hydrogen.energy.gov/pdfs/progress07/iv-b-5c-macdonald.pdf
[99 ]  Moreno O A , Kelly M T, Ortega J V. Process for the Regeneration of sodium borate to sodium borohydride for use as a hydrogen storage source , DOE Hydrogen Program: FY 2007 Annual Progress Report ,(2007-10-18) . [ 2008-10-01 ].http://www.hydrogen.energy.gov/pdfs/progress07/iv-b-2-moreno.pdf

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
阅读次数
全文


摘要

硼氢化钠催化水解制氢*