English
新闻公告
More
化学进展 2009, Vol. 21 Issue (10): 2212-2218 前一篇   后一篇

• 综述与评论 •

硼氢化锂储氢材料研究*

方占召; 康向东; 王平**   

  1. (中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016)
  • 收稿日期:2008-11-11 出版日期:2009-10-24 发布日期:2009-10-09
  • 通讯作者: 王平 E-mail:pingwang@imr.ac.cn
  • 基金资助:

    国家自然科学基金

Study of Hydrogen Storage Properties of Lithium Borohydride

Fang Zhanzhao ;   Kang Xiangdong ;   Wang Ping**   

  1. (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)
  • Received:2008-11-11 Online:2009-10-24 Published:2009-10-09
  • Contact: Wang Ping E-mail:pingwang@imr.ac.cn
  • Supported by:

    National Natural Science Foundation of China

车载储氢是推进氢燃料车规模化商业应用的“瓶颈”环节,开发高性能车载储氢材料/技术成为当前能源及材料领域关注的热点。近年来,随着储氢材料领域的不断拓展,以硼氢化锂(LiBH4)为典型代表的高储量配位金属氢化物日渐成为新兴的储氢材料研究热点。本文从体系成分/反应路径调整、纳米结构调制、阴/阳离子替代及催化体系构建等方面概述了改善LiBH4综合储/放氢性能的最新研究进展,旨在明确配位硼氢化物储氢材料研究中的关键问题及可能的解决途径。

On-board hydrogen storage is generally recognized as the “bottleneck” in promoting the commercialization of hydrogen-powered vehicles. Development of high-performance hydrogen storage materials/technologies for on-board applications is therefore attracting intensive interest of the researchers from both energy and material fields. Recently, lithium borohydride (LiBH4) and other related complex metal hydrides have attracted ever-increasing attention as potential high-capacity hydrogen storage media. The paper reviews the latest progresses made in improving the reversible dehydrogenation of LiBH4 by using various methods, including material composition/reaction pathway tailoring, nanoporous scaffolds incorporation, anion/cation substitution, and catalyst doping, aiming at providing an outline of the key scientific issues and the potential solutions in developing borohydride-based hydrogen storage systems.

Contents
1 Introduction
2 Fundamental physical and chemical properties of LiBH4
3 Improved dehydrogenation/rehydrogenation properties of LiBH4
3.1 reactant destabilization
3.2 nanoporous scaffolds incorporation
3.3 anion/cation substitution
3.4 catalyst modification
4 Conclusion and outlook

中图分类号: 

()

[ 1 ]  Schultz M G, Diehl T, Brasseur G P , et al . Science , 2003 , 302(5645) : 624 —627
[ 2 ]  Schlapbach L , Züttel A. Nature , 2001 , 414 (6861) : 353 —358
[ 3 ]  Grochala W, Edwards P P. Chem. Rev. , 2004 , 104 (3) : 1283 —1315
[ 4 ]  Seayad A M, Antonelli D M. Adv. Mater. , 2004 , 16 ( 9P10) :765 —777
[ 5 ]  Orimo S , Nakamori Y, Eliseo J R , et al . Chem. Rev. , 2007 , 107(10) : 4111 —4132
[ 6 ]  Gutowska A , Li L Y, Shin Y S , et al . Angew. Chem. Int . Ed. ,2005 , 44 (23) : 3578 —3582
[ 7 ]  Wang P , Kang X D. Dalton Trans. , 2008 , (40) : 5400 —5413
[ 8 ]  Züttel A , Borgschulte A , Orimo S. Scr. Mater. , 2007 , 56 (10) :823 —828
[ 9 ]  Schlesinger H I , Brown H C. J . Am. Chem. Soc , 1940 , 62 (12) :3429 —3435
[10 ]  Züttel A , Rentsch S , Fischer P , et al . J . Alloys Compd. , 2003 ,356/357 : 515 —520
[11 ]  Soulié J , Renaudin G, Yvon K, et al . J . Alloys Compd. , 2002 ,346 : 200 —205
[12 ]  Orimo S , Nakamori Y, Ohba N , et al . Appl . Phys. Lett . , 2006 ,89 (2) : art . no. 021920
[13 ]  Mosegaard L , M?ller B , J?rgensen J E , et al . J . Alloys Compd. ,2007 , 446/447 : 301 —305
[14 ]  Kang J K, Kim S Y, Han YS , et al . Appl . Phys. Lett . , 2005 , 87(11) : art . no. 111904
[15 ]  Miwa K, Ohba N , Towata S , et al . Phys. Rev. B , 2004 , 69 (24) :art . no. 245120
[16 ]  Frankcombe TJ , Kroes GJ . Phys. Rev. B , 2006 , 73 (17) : art .no. 174302
[17 ]  Smith MB , Bass G E. J . Chem. Eng. Data , 1963 , 8 (3) : 342 —346
[18 ]  Frankcombe TJ , Kroes GJ , Züttel A. Chem. Phys. Lett . , 2005 ,405 (1P3) : 73 —78
[19 ]  Vajo J J , Skeith S L , Mertens F. J . Phys. Chem. B , 2005 , 109(9) : 3719 —3722
[20 ]  Vajo J J , Olson GL. Scr. Mater. , 2007 , 56 (10) : 829 —834
[21 ]  Pinkerton F E , Meyer MS , Meisner GP , et al . J . Phys. Chem. C ,2007 , 111 (35) : 12881 —12885
[22 ]  Barkhordarian G, Klassen T, Dornheim M, et al . J . Alloys Compd. , 2007 , 440 : L18 —L21
[23 ]  Fang Z Z, Wang P , Rufford T E , et al . Acta Mater. , 2008 , 56(20) : 6257 —6263
[24 ]  Ge Q F. J . Phys. Chem. A , 2004 , 108 (41) : 8682 —8690
[25 ]  Orimo S , Nakamori Y, Kitahara G, et al . J . Alloys Compd. , 2005 ,404/406 : 427 —430
[26 ]  Mauron P , Buchter F , Friedrichs O , et al . J . Phys. Chem. B ,2008 , 112 (3) : 906 —910
[27 ]  Friedrichs O , Buchter F , Borgschulte A , et al . Acta Mater. , 2008 ,56 (5) : 949 —954
[28 ]  Reilly J J , Wiswall R H. Inorg. Chem. , 1967 , 6 (12) : 2220 —2223
[29 ]  Barkhordarian G, Klassen T, Bormann R. DE 102004/061286 ,2004 ; WO 2006/063627A1 , 2004
[30 ]  Bêsenberg U , Doppiu S , Mosegaard L , et al . Acta Mater. , 2007 ,55 (11) : 3951 —3958
[31 ]  Vajo J J , Salguero T T, Gross A F , et al . J . Alloys Compd. , 2007 ,446/447 : 409 —414
[32 ]  Alapati S V , Johnson J K, Sholl D S. J . Phys. Chem. B , 2006 ,110 (17) : 8769 —8776
[33 ]  Alapati S V , Johnson J K, Sholl D S. J . Alloys Compd. , 2007 ,446/447 : 23 —27
[34 ]  Pinkerton F E , Meyer MS. J . Alloys Compd. , 2008 , 464 : L1 —L4
[35 ]  Purewal J , Hwang S J , Bowman R C , et al . J . Phys. Chem. C ,2008 , 112 (22) : 8481 —8485
[36 ]  Pinkerton F E , Meisner GP , Meyer MS , et al . J . Phys. Chem. B ,2005 , 109 (1) : 6 —8
[37 ]  Meisner G P , Scullin ML , Balogh M P , et al . J . Phys. Chem. B ,2006 , 110 (9) : 4186 —4192
[38 ]  Aoki M, Miwa K, Noritake T, et al . Appl . Phys. A , 2005 , 80(7) : 1409 —1412
[39 ]  Nakamori Y, Ninomiya A , Kitahara G, et al . J . Power Sources ,2006 , 155 (2) : 447 —455
[40 ]  Pinkerton F E , Meyer M S , Meisner GP , et al . J . Phys. Chem. B ,2006 , 110 (15) : 7967 —7974
[41 ]  Pinkerton F E , Meyer M S , Meisner G P , et al . J . Alloys Compd. ,2007 , 433 : 282 —291
[42 ]  Filinchuk Y E , Yvon K, Meisner G P , et al . Inorg. Chem. , 2006 ,45 (4) : 1433 —1435
[43 ]  Noritake T, Aoki M, Towata S , et al . Appl . Phys. A , 2006 , 83(2) : 277 —279
[44 ]  Yang J , Sudik A , Siegel D J , et al . Angew. Chem. Int . Ed. ,2008 , 47 (5) : 882 —887
[45 ]  Yang J , Sudik A , Siegel DJ , et al . J . Alloys Compd. , 2007 , 446/447 : 345 —349
[46 ]  Yu X B , Grant DM, Walker GS , et al . J . Phys. Chem. C , 2008 ,112 (29) : 11059 —11062
[47 ]  Kang X D , Wang P , Ma L P , et al . Appl . Phys. A , 2007 , 89 (4) :963 —966
[48 ]  Shi Q , Yu X B , Feidenhans’l R , et al . J . Phys. Chem. C , 2008 ,112 (46) : 18244 —18248
[49 ]  Orimo S , Fujii H , Ikeda K. Acta Mater. , 1997 , 45 (1) : 331 —341
[50 ]  Zaluska A , Zaluski L , Strêm-Olsen J O. Appl . Phys. A , 2001 , 72(2) : 157 —165
[51 ]  Wagemans R W P , van Lenthe J H , de Jongh P E , et al . J . Am.Chem. Soc. , 2005 , 127 (47) : 16675 —16680
[52 ]  Gross A F , Vajo J J , van Atta S L , et al . J . Phys. Chem. C ,2008 , 112 (14) : 5651 —5657
[53 ]  Zhang Y, Zhang W S , Wang A Q , et al . Int . J . Hydrogen Energy ,2007 , 32 (16) : 3976 —3980
[54 ]  Nakamori Y, Miwa K, Ninomiya A , et al . Phys. Rev. B , 2006 , 74(4) : art . no. 045126
[55 ]  Miwa K, Ohba N , Towata S , et al . J . Alloys Compd. , 2005 , 404/406 : 140 —143
[56 ]  Hagemann H , Longhini M, Kaminski J W, et al . J . Phys. Chem.A , 2008 , 112 (33) : 7551 —7555
[57 ]  Li H W, Orimo S , Nakamori Y, et al . J . Alloys Compd. , 2007 ,446/447 : 315 —318
[58 ]  Yin L C , Wang P , Fang Z Z, et al . Chem. Phys. Lett . , 2008 , 450(4/6) : 318 —321
[59 ]  Yin L C , Wang P , Kang X D , et al . Phys. Chem. Chem. Phys. ,2007 , 9 (12) : 1499 —1502
[60 ]  Au M, Jurgensen A. J . Phys. Chem. B , 2006 , 110 (13) : 7062 —7067
[61 ]  Au M, Jurgensen A , Zeigler K. J . Phys. Chem. B , 2006 , 110(51) : 26482 —26487
[62 ]  Mosegaard L , M?ller B , J?rgensen J E , et al . J . Phys. Chem. C ,2008 , 112 (4) : 1299 —1303
[63 ]  Kostka J , Lohstroh W, Fichtner M, et al . J . Phys. Chem. C ,2007 , 111 (37) : 14026 —14029
[64 ]  Fang Z Z, Kang X D , Dai H B , et al . Scr. Mater. , 2008 , 58 (10) :922 —925
[65 ]  Fang Z Z, Kang X D , Wang P , et al . J . Phys. Chem. C , 2008 ,112 (43) : 17023 —17029
[66 ]  Fan M Q , Sun L X, Zhang Y, et al . Int . J . Hydrogen Energy ,2008 , 33 (1) : 74 —80

[1] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[2] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[3] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[6] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[9] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[10] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[11] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[12] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[13] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[14] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[15] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
阅读次数
全文


摘要

硼氢化锂储氢材料研究*