English
新闻公告
More
化学进展 2009, Vol. 21 Issue (10): 2199-2204 前一篇   后一篇

• 综述与评论 •

亲二氧化碳碳氢聚合物及其应用*

陈可平;梁丽芸;谭必恩**   

  1. (华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074)
  • 收稿日期:2008-11-13 修回日期:2008-12-22 出版日期:2009-10-24 发布日期:2009-10-09
  • 通讯作者: 谭必恩 E-mail:bien.tan@mail.hust.edu.cn
  • 基金资助:

    国家自然科学基金

CO2-Philc Hydrocarbon Polymers and Their Applications

Chen Keping;    Liang Liyun ;   Tan Bien**   

  1. (Hubei Key Laboratory of Materials Chemistry and Service Failure, College of Chemistry and Chemical Engineering ,Huazhong University of Science and Technology , Wuhan 430074 , China)
  • Received:2008-11-13 Revised:2008-12-22 Online:2009-10-24 Published:2009-10-09
  • Contact: Tan Bien E-mail:bien.tan@mail.hust.edu.cn
  • Supported by:

    National Natural Science Foundation of China

超临界二氧化碳(scCO2)作为一种新型“绿色溶剂”,具有无毒、不可燃、易于分离以及来源丰富等特点,有望替代传统的挥发性有机溶剂。但scCO2是很弱的溶剂,大部分极性分子和高分子量聚合物在其中的溶解度都很低,限制了其工业应用。目前,应用scCO2遇到的一个挑战就是寻找有效的适用于scCO2的表面活性剂、配合物、相转移剂等。本文综述了亲二氧化碳聚合物的研究进展,从链段柔顺性和自由体积、溶质/溶质相互作用、溶质/CO2相互作用三个方面介绍了亲二氧化碳碳氢化合物的设计原则,并介绍了亲二氧化碳聚合物在制备表面活性剂、增溶染料和催化剂等方面的相关应用。

Supercritical carbon dioxide (scCO2) is considered to be a new “green solvent”, because it is nontoxic, nonflammable, easy separation and readily available in high purity from a number of sources. scCO2 has been shown to be a promising alternative solvent for conventional volatile organic solvents. A significant technical barrier with using scCO2 is that it is a relatively weak solvent of important classes of materials which tend to exhibit low solubility in scCO2 including polar molecules and high-molecular weight polymers, which limites its industrial applications. Currently, in order to expand its applications, the discovery of inexpensive CO2-soluble materials or “CO2-philes” has been an important challenge. There has been considerable research effort focused on discovering inexpensive CO2-philic polymers from which inexpensive CO2-philic surfactants, ligands, and phase transfer agents could be developed. The present paper reviews the recent progress of CO2-philic polymers and their design principles based on the molecular characteristics (flexibility and free volume, weak self-interactions of solutes and powerful interactions between CO2 and solutes). And the applications of CO2-philic polymers such as surfactant preparation, solubilisation of catalysts and dyes will also be discussed.

Contents
1 Study of CO2-philic polymers
2 Design of CO2-philic hydrocarbon polymers
2.1 Flexibility and free volume
2.2 Weak self-interactions of solutes
2.3 Specific interactions between CO2 and solutes
3 Solubility measurements of CO2-philic polymers
3.1 Cloud pressure point curve
3.2 Parallel solubility measurement
4 Applications of CO2-philic polymers
4.1 Preparation of surfactants
4.2 Solubilizing agent
5 Prospects

中图分类号: 

()

[ 1 ]  Goetheer E L V , Vorstman M A G, Keurentjes J T F. Chem. Eng.Sci . , 1999 , 54 (10) : 1589 —1596
[ 2 ]  Kirby C F , McHugh M A. Chem. Rev. , 1999 , 99 (2) : 565 —602
[ 3 ]  Kauffman J F. J . Phys. Chem. A , 2001 , 105 (14) : 3433 —3442
[ 4 ]  Consan KA , Smith R D. J . Supercrit . Fluids , 1990 , 3 (2) : 51 —65
[ 5 ]  DeSimone J M, Guan Z, Elsbernd C S. Science , 1992 , 257 : 945 —947
[ 6 ]  McClain J B , Londono D , DeSimone J M, et al . J . Am. Chem.Soc. , 1996 , 118 (4) : 917 —918
[ 7 ]  Hsiao Y L , Maury E E , DeSimone J M, et al . Macromolecules ,1995 , 28 (24) : 8159 —8166
[ 8 ]  Adamsky F A , Beckman E J . Macromolecules , 1994 , 27 ( 1 ) :312 —314
[ 9 ]  Johnston KP , Harrison KL , Clarke MJ , et al . Science , 1996 , 271(5249) : 624 —626
[10 ]  Ghenciu E G, Beckman E J . Ind. Eng. Chem. Res. , 1997 , 36(12) : 5366 —5370
[11 ]  Ghenciu E G, Russell A J , Beckman E J , et al . Biotechnol .Bioeng. , 1998 , 58 (6) : 572 —580
[12 ]  Yazdi A V , Beckman E J . Ind. Eng. Chem. Res. , 1997 , 36 (6) :2368 —2374
[13 ]  Li J , Beckman E J . Ind. Eng. Chem. Res. , 1998 , 37 ( 12) :4768 —4773
[14 ]  Fink R , Hancu D , Beckman EJ , et al . J . Phys. Chem. B , 1999 ,103 (31) : 6441 —6444
[15 ]  O’Neill M L , Cao Q , Fang M, et al . Ind. Eng. Chem. Res. ,1998 , 37 (8) : 3067 —3079
[16 ]  Johnston K P. Curr. Opin. Colloid Interface Sci . , 2000 , 5 (5/6) :350 —355
[17 ]  Fink R , Beckman E J . J . Supercrit . Fluids , 2000 , 18 (2) : 101 —110
[18 ]  Liu K, Kiran E. J . Supercrit . Fluids , 1999 , 16 (1) : 59 —79
[19 ]  Luna-Barcenas G, Mawson S , Takishima S , et al . Fluid Phase Equilib. , 1998 , 146 (1P2) : 325 —337
[20 ]  Conway S E , Byun H S , McHugh M A , et al . J . Appl . Polym.Sci . , 2001 , 80 : 1155 —1161
[21 ]  Shen Z, McHugh M A , Xu J , et al . Polymer , 2003 , 44 ( 5) :1491 —1498
[22 ]  Rindfleisch F , DiNoia T P , McHugh MA. J . Phys. Chem. , 1996 ,100 (38) : 15581 —15587
[23 ]  Bray C L , Tan B , Wood C D , et al . J . Mater. Chem. , 2005 , 15(4) : 456 —459
[24 ]  Eastoe J , Paul A , Nave S , et al . J . Am. Chem. Soc. , 2001 , 123(5) : 988 —989
[25 ]  Eastoe J , Gold S , Steytler D C. Langmuir , 2006 , 22 (24) : 9832 —9842
[26 ]  Beckman E J . Chem. Commun. , 2004 , (17) : 1885 —1888
[27 ]  Dardin A , DeSimone J M, Samulski E T. J . Phys. Chem. B , 1998 ,102 (10) : 1775 —1780
[28 ]  Kazarian S G, Vincent M F , Bright F V , et al . J . Am. Chem.Soc. , 1996 , 118 (7) : 1729 —1736
[29 ]  Paveendran P , Wallen S L. J . Am. Chem. Soc. , 2002 , 124 (42) :12590 —12599
[30 ]  Kilic S , Michalik S , Beckman EJ , et al . Ind. Eng. Chem. Res. ,2003 , 42 (25) : 6415 —6424
[31 ]  Sarbu T, Styranec T, Beckman EJ . Nature , 2000 , 405 : 165 —168
[32 ]  Sarbu T, Styranec T J , Beckman E J . Ind. Eng. Chem. Res. ,2000 , 39 (12) : 4678 —4683
[33 ]  Tan B , Woods H M, Licence P , et al . Macromolecules , 2005 , 38(5) : 1691 —1698
[34 ]  Wick C D , Siepmann J I , Theodorou D N. J . Am. Chem. Soc. ,2005 , 127 (35) : 12338 —12342
[35 ]  Butler R , Davies C M, Cooper A I. Adv. Mater. , 2001 , 13 (19) :1459 —1463
[36 ]  Tan B , Cooper A I. J . Am. Chem. Soc. , 2005 , 127 (25) : 8938 —8939
[37 ]  Tan B , Lee J Y, Cooper A I. Macromolecules , 2006 , 39 ( 22) :7471 —7473
[38 ]  Drohmann C , Beckman E J . J . Supercrit . Fluids , 2002 , 22 (2) :103 —110
[39 ]  Wood C D , Cooper A I. Macromolecules , 2003 , 36 (20) : 7534 —7542
[40 ]  Tan B , Lee J Y, Cooper A I. Macromolecules , 2007 , 40 ( 6) :1945 —1954
[41 ]  Lee J Y, Tan B , Cooper A I. Macromolecules , 2007 , 40 ( 6) :1955 —1961
[42 ]  Zhang H F , Wang D , Tan B , et al . Nat . Nanotechnol . , 2008 , 3(8) : 506 —511
[43 ]  Cooper A I. Adv. Mater. , 2003 , 15 (13) : 1049 —1059
[44 ]  Lee H , Terry E , Howdle S M, et al . J . Am. Chem. Soc. , 2008 ,130 (37) : 12242 —12243
[45 ]  Fan X, Potluri V K, McLeod M C , et al . J . Am. Chem. Soc. ,2005 , 127 (33) : 11754 —11762
[46 ]  Kani I , Omary M A , Fackler J P , et al . Tetrahedron , 2002 , 58(20) : 3923 —3928
[47 ]  Kani I , Flores R , Fackler J P , et al . J . Supercrit . Fluids , 2004 ,31 (3) : 287 —294

[1] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.
[2] 戚朝荣 江焕峰. 超临界二氧化碳介质中的有机反应*[J]. 化学进展, 2010, 22(07): 1274-1285.
[3] 银建中 周丹 王爱琴. 超临界CO2微乳/反胶束体系热力学行为与应用*[J]. 化学进展, 2009, 21(12): 2505-2514.
[4] 张怀平,陈鸣才. 超临界二氧化碳中的聚合反应*[J]. 化学进展, 2009, 21(09): 1869-1879.
[5] 张腾云,范洪波,钟理. 超临界CO2中醇类的分子氧氧化*[J]. 化学进展, 2008, 20(09): 1270-1275.
[6] 胡玉,侯震山. 超临界(压缩)二氧化碳介质中的选择氧化*[J]. 化学进展, 2007, 19(9): 1267-1274.
[7] 李虹,徐安厚,张永明. 超临界二氧化碳中含氟聚合物的合成*[J]. 化学进展, 2007, 19(10): 1562-1567.
[8] 胡振锟,薛敏钊,刘燕刚. 纳米色料的制备及应用[J]. 化学进展, 2006, 18(01): 66-73.
[9] 徐志康,朱凌燕,封麟先. 超临界CO2中的高分子合成研究进展*[J]. 化学进展, 1998, 10(02): 202-.
阅读次数
全文


摘要

亲二氧化碳碳氢聚合物及其应用*