English
新闻公告
More
化学进展 2009, Vol. 21 Issue (10): 2164-2175 前一篇   后一篇

• 综述与评论 •

用于软骨修复的水凝胶*

胡小红; 朱旸; 高长有**   

  1. (浙江大学高分子科学与工程学系 杭州 310027)
  • 收稿日期:2009-01-16 修回日期:2009-03-04 出版日期:2009-10-24 发布日期:2009-10-09
  • 通讯作者: 高长有 E-mail:cygao@mail.hz.zj.cn
  • 基金资助:

    863项目

Hydrogels for Cartilage Regeneration

Hu Xiaohong;  Zhu Yang;  Gao Changyou**   

  1. (Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China)
  • Received:2009-01-16 Revised:2009-03-04 Online:2009-10-24 Published:2009-10-09
  • Contact: Gao Changyou E-mail:cygao@mail.hz.zj.cn

在软骨组织修复与再生中,水凝胶支架能够为细胞的增殖与分化提供更接近于天然软骨细胞外基质的微环境,是软骨组织修复的一种理想材料。本文介绍了近年发展起来的一些具有新结构和新性能的水凝胶,包括高强度水凝胶以及结构中包含功能蛋白和多肽的水凝胶。重点介绍了对温度、pH值及对生物分子产生响应的刺激响应型水凝胶和自组装水凝胶。具有α-螺旋结构和自组装水凝胶通过两个或多个卷曲螺旋结构聚集形成水凝胶,而通过多肽自组装形成的具有纤维结构的水凝胶在微观的结构上更接近软骨细胞外基质。此外,DNA的分子和序列也用来设计基于DNA的新型水凝胶。本文最后介绍了能在力学、生物学和可注射性等多方面更好地满足软骨修复需要的复合型水凝胶支架、干细胞与水凝胶的复合以及生长因子、基因和一些力学刺激对软骨再生的促进作用。

Highly hydrated hydrogels can better mimic the chemical and physical environments of cartilage extracellular matrix(ECM)and therefore are ideal biomaterials for cartilage regeneration. Besides the traditional hydrogels which have been used in cartilage repair, some hydrogels with new structures and properties are also introduced in this article, including mechanically strong hydrogels and hydrogels containing functional proteins or peptide domains. First, hydrogels with smart response to pH, temperature, ions, stresses and bioactive factors are thus discussed. Second, self-assembled hydrogels containing peptide domains which present a novel advance in terms of their structural similarity to natural ECM of cartilage and their bioactivity to cartilage regeneration are illustrated. Some hydrogels can be crosslinked by interaction between or among self-assembled α-helix structures, and others may self-assemble to form nanofibrous structures. DNA sequences and molecules have also been used to design DNA based hydrogels. The hydrogel filled porous scaffolds, on the other hand, can maintain both the good mechanical strength of the hard scaffolds and the good biocompatibility of the soft hydrogels, thus behaved better performance in cartilage regeneration. The injectable hydrogel/microcarrier composites with suitabley mechanical properties and degradation time are another type of appealing scaffolds having the in vivo culture environment for the delivered cells, minimal invasion and low cost of surgical procedures. Moreover, mesenchymal stem cells (MSCs) have shown great promise in cartilage repair, thus can be encapsulated into the hydrogels and differentiate into the chondrocytes in situ. For this sense, stimulating factors such as growth factors, genes and hydrostatic or dynamic compression may be simultaneously applied to accelerate cartilage regeneration.

Contents
1 Introduction
2 Novel fabricating methods of hydrogels
2.1 Hydrogels and their fabricating methods
2.2 Hydrogels with excellent mechanical properties
2.3 Stimuli-responsive hydrogels
2.4 Self-assembled hydrogels
3 Hydrogels incorporated with cells and bioactive factors
3.1 Chondrocytes/hydrogel systems
3.2 Stem cells/hydrogel systems
3.3 Cells/bioactive factors/hydrogel systems
4 Conclusions and perspectives

中图分类号: 

()

[ 1 ]  Bonzani I C , George J H , Stevens MM. Curr. Opin. Chem. Biol . ,2006 , 10 : 568 —575
[ 2 ]  Elisseeff J . Exp. Opin. Biol . Ther. , 2004 , 4 : 1849 —1859
[ 3 ]  Marlovits S , Zeller P , Singer P , Resinger C , Vecsei V. Euro. J .Radiol . , 2006 , 57 : 24 —31
[ 4 ]  Cindy C , Jason A B. Adv. Drug Del . Rev. , 2008 , 60 : 243 —262
[ 5 ]  Molly M S , Julian H G. Science , 2005 , 310 : 1135 —1138
[ 6 ]  Hoffman A S. Adv. Drug Del . Rev. , 2002 , 54 : 3 —12
[ 7 ]  Awad H A , Wickham M Q , Leddy H A , Gimble J M, Guilak F.Biomaterials , 2004 , 25 : 3211 —3222
[ 8 ]  Mauck R L , Soltz M A , Wang C C B , Wong D D , Chao P H G,Valhmu WB , Hung C T, Ateshian GA. ASMEJ . Biomech. Eng. ,2000 , 122 : 252 —260
[ 9 ]  Lee D A , Bader D L. J . Orthop. Res. , 1997 , 15 : 181 —188
[10 ]  Peppas N A , Benner R E. Biomaterials , 1980 , 1 : 158 —162
[11 ]  Kuijpers A J , van Wachum P B , van Luyn MJ A , Engbers G HM,Krijsveld J , Zaat S A J , Dankert J , Feijen J . J . Control . Release ,2000 , 67 : 323 —336
[12 ]  Hiemstra C , van der Aa L J , Zhong Z Y, Dijkstra P J , Feijen J .Biomacromolecules , 2007 , 8 : 1548 —1556
[13 ]  Berger J , Reist M, Mayer J M, Felt O , Peppas N A , Gurny R.Euro. J . Pharm. Biopharm. , 2004 , 57 : 19 —34
[14 ]  Hong Y, Mao Z W, Wang H L , Gao C Y, Shen J C. J . Biomed.Mater. Res. , 2006 , 79A: 913 —922
[15 ]  Hong Y, Song H Q , Gong Y H , Mao Z M, Gao C Y, Shen J C.Acta Biomater. , 2007 , 3 : 23 —31
[16 ]  Hu X H , Gao C Y. J . Appl . Polym. Sci . , 2008 , 110 : 1059 —1067
[17 ]  Crescenzi V , Cornelio L , Meo C D , Nardecchia S , Lamanna R.Biomacromolecules , 2007 , 8 : 1844 —1850
[18 ]  Ossipov D A , Hilborn J . Macromolecules , 2006 , 39 : 1709 —1718
[19 ]  Nandivada H , Jiang X W, Lahann J . Adv. Mater. , 2007 , 19 :2197 —2208
[20 ]  Zhao H G, Ma L , Zhou J , Mao Z W, Gao C Y, Shen J C. Biomed.Mater. , 2008 , 3 : 1 —9
[21 ]  Schense J C , Hubbell J A. Bioconjug. Chem. , 1999 , 10 : 75 —81
[22 ]  Eyrich D , Brandl F , Appel B , Wiese H , Maier G, Wenzel M,Staudenmaier R , Goepferich A , Blunk T. Biomaterials , 2007 , 28 :55 —65
[23 ]  Okumura Y, Ito K. Adv. Mater. , 2001 , 13 : 485 —487
[24 ]  Gong J P , Katsuyama Y, Osada Y, Kurokawa T. Adv. Mater. ,2003 , 15 : 1155 —1158
[25 ]  Na Y H , Kurokawa T, Katsuyama Y, Tsukeshiba H , Gong J P ,Osada Y, Okabe S , Karino T, Shibayama M. Macromolecules ,2004 , 37 : 5370 —5374
[26 ]  Nakayama A , Kakugo A , Gong J P , Osada Y, Takai M, Erata T,Kawano S. Adv. Func. Mater. , 2004 , 14 : 1124 —1128
[27 ]  Yasuda K, Gong J P , Katsuyama Y, Nakayama A , Tanabe Y,Kondo E , Ueno M, Osada Y. Biomaterials , 2005 , 26 : 4468 —4475
[28 ]  Haraguchi K, Takehisa T. Adv. Mater. , 2002 , 14 : 1120 —1124
[29 ]  Huang T, Xu H G, Jiao K X, Zhu L P , Brown H R , Wang H L.Adv. Mater. , 2007 , 19 : 1622 —1626
[30 ]  Duíek K, Patterson D. J . Polym. Sci . , 1968 , 6A: 1209 —1216
[31 ]  Tanaka T. Phys. Rev. Lett . , 1978 , 40 : 820 —823
[32 ]  Petka W A , Harden J L , McGrath K P , Wirtz D , Tirrell D A.Science , 1998 , 281 : 389 —392
[33 ]  Miyata T, Asami T, Uragami T. Nature , 1999 , 399 : 766 —769
[34 ]  Nowak A P , Breedveld V , Pakstis L , Ozbas B , Pine D J , Pochan D , Deming TJ . Nature , 2002 , 417 : 424 —428
[35 ]  Ehrick J D , Deo S K, Browning T W, Bachas L G, Madou M J ,Daunert S. Nat . Mater. , 2005 , 4 : 298 —302
[36 ]  Yang J Y, Xu C Y, Wang C , Kopecek J . Biomacromolecules ,2006 , 7 : 1187 —1195
[37 ]  Zhang S , Holmes T C , Lockshin C , Rich A. Proc. Natl . Acad.Sci . , 1993 , 90 : 3334 —3338
[38 ]  Zhang S , Holmes T C , DiPersio C M, Hynes R O , Su X, Rich A.Biomaterials , 1995 , 16 : 1385 —1393
[39 ]  Holmes T C , de Lacalle S , Su X, Liu G, Rich A , Zhang S. Proc.Natl . Acad. Sci . , 2000 , 97 : 6728 —6733
[40 ]  Kisiday J , Jin M, Kurz B , Hung H , Semino C , Zhang S , Grodzinsky A J . Proc. Natl . Acad. Sci . , 2002 , 99 : 9996 —10001
[41 ]  Sieminski A L , Semino C E , Gong H , Kamm R D. J . Biomed.Mater. Res. , 2008 , 87 A: 494 —504
[42 ]  Hartgerink J D , Beniash E , Stupp S I. Proc. Natl . Acad. Sci . ,2002 , 99 : 5133 —5138
[43 ]  Hartgerink J D , Beniash E , Stupp S I. Science , 2001 , 294 : 1684 —1688
[44 ]  Paramonov S E , Jun H W, Hartgerink J D. Biomacromolecules ,2006 , 7 : 24 —26
[45 ]  Dong H , Paramonov S E , Aulisa L , Bakota EL , Hartgerink J D. J .Am. Chem. Soc. , 2007 , 129 : 12468 —12472
[46 ]  Murakami Y, Maeda M. Biomacromolecules , 2005 , 6 : 2927 —2929
[47 ]  Lee C K, Shin S R , Lee S H , et al . Angew. Chem. Int . Ed. ,2008 , 47 : 2470 —2474
[48 ]  Burdick J A , Chung C , Jia X Q , et al . Biomacromolecules , 2005 ,6 : 386 —391
[49 ]  Chung C , Mesa J , Randolph MA , et al . J . Biomed. Mater. Res. ,2006 , 77A: 518 —525
[50 ]  Li Q , Williams C G, Sun D D N , et al . J . Biomed. Mater. Res. ,2004 , 68A: 28 —33
[51 ]  Bryant S J , Anseth KS. J . Biomed. Mater. Res. , 2002 , 59 : 63 —72
[52 ]  Bryant S J , Anseth K S. J . Biomed. Mater. Res. , 2003 , 64A:70 —79
[53 ]  De Franceschi L , Grigolo B , Roseti L , et al . J . Biomed. Mater.Res. , 2005 , 75A: 612 —622
[54 ]  Gong Y H , He L J , Li J , et al . J . Biomed. Mater. Res. , 2007 ,82B : 192 —204
[55 ]  赵海光( Zhao H G) . 浙江大学硕士学位论文(Master Dissertation of Zhejiang University) , 2005
[56 ]  Hong Y, Gong Y H , Gao C Y, et al . J . Biomed. Mater. Res. ,2008 , 85A: 628 —637
[57 ]  Hu X H , Zhou J , Zhang N , et al . Journal of the Mechanical Behavior of Biomedical Materials , 2008 , 1 : 352 —359
[58 ]  Wang D A , Varghese S , Sharma B , et al . Nat . Mater. , 2007 , 6 :385 —392
[59 ]  Tuli R , Tuli S , Nandi S , et al . J . Biol . Chem. , 2003 , 278 :41227 —41236
[60 ]  Gooch KJ , Kwon J H , Blunk T, et al . Biotech. Bioeng. , 2001 ,72 : 402 —407
[61 ]  Roberts A B , Kondaiah P , Rosa F , et al . Growth Factors , 1990 , 3 :277 —286
[62 ]  Gooch KJ , Blunk T, Courter D L , et al . Biochem. Biophys. Res.Commun. , 2001 , 286 : 909 —915
[63 ]  Martin I , Suetterlin R , Baschong W, Heberer M, Vunjak2Novakovic G, Freed L E. J . Cell . Biochem. , 2001 , 83 : 121 —128
[64 ]  Holland T A , Tabata Y, Mikos A G. J . Control . Release , 2005 ,101 : 111 —125
[65 ]  Park H , Temenoff J S , Holland TA , et al . Biomaterials , 2005 , 26 :7095 —7103
[66 ]  Sharma B , Williams C G, Khan M, et al . Plast . Recon. Sur. ,2007 , 119 : 112 —120
[67 ]  Huang Q , Hutmacher D W, Lee E H. Tiss. Eng. , 2002 , 8 : 469 —482
[68 ]  DeFail A J , Chu C R , Izzo N , et al . Biomaterials , 2006 , 27 :1579 —1585
[69 ]  Mauck R L , Nicoll S B , Seyhan S L , et al . Tiss. Eng. , 2003 , 9 :597 —611
[70 ]  李安永(Li A Y) , 田现书(Tian X S) . 生物学通报(Bulletin of Biology) , 1998 , 33 : 24 —26
[71 ]  Saraf A , Mikos A G. Adv. Drug Del . Rev. , 2006 , 58 : 592 —603
[72 ]  姚康德(Yao KD) , 宋雪峰(Song X F) , 刘文广(Liu W G) 等.中国修复重建外科杂志( Chinese Journal of Reparative and Reconstructive Surgery) , 2002 , 16 : 325 —328
[73 ]  Grande D A , Mason J , Light E , Dines D. J . Bone Joint Sur. Am. ,2003 , 85 : 111 —116
[74 ]  Hansen U , Schunke M, Domm C , et al . J . Biomech. , 2001 , 34 :941 —949
[75 ]  Hu J C , Athanasiou KA. Tiss. Eng. , 2006 , 12 : 1337 —1344
[76 ]  De Croos J N A , Dhaliwal S S , Grynpas M D , et al . Matrix Biol . ,2006 , 25 : 323 —331
[77 ]  Waldman S D , Couto D C , Grynpas M D , et al . Osteo. Cart . ,2006 , 14 : 323 —330
[78 ]  Davisson T, Kunig S , Chen A , et al . J . Ortho. Res. , 2002 , 20 :842 —848
[79 ]  Angele P , Schumann D , Angele M, et al . Biorheology , 2004 , 41 :335 —346
[80 ]  Lee C R , Grodzinsky A J , Spector A. J . Biomed. Mater. Res. ,2003 , 64A: 560 —569
[81 ]  Ng KW, Mauck R L , Statman L Y, et al . Biorheology , 2006 , 43 :497 —507
[82 ]  Hunter C J , Mouw J K, Levenston M E. Osteo. Cart . , 2004 , 12 :117 —130

[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[4] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[5] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[6] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[7] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[8] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[9] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[10] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[11] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[12] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
[13] 蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653-1668.
[14] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[15] 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. γ-聚谷氨酸水凝胶的制备及其应用[J]. 化学进展, 2018, 30(8): 1161-1171.
阅读次数
全文


摘要

用于软骨修复的水凝胶*