English
新闻公告
More
化学进展 2009, Vol. 21 Issue (10): 2115-2122 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池硅基复合物负极材料*

陈敬波; 赵海雷**;何见超; 王梦微   

  1. (北京科技大学材料学院 北京100083)
  • 收稿日期:2008-11-04 修回日期:2008-11-19 出版日期:2009-10-24 发布日期:2009-10-09
  • 通讯作者: 赵海雷 E-mail:hlzhao@mater.ustb.edu.cn
  • 基金资助:

    863项目

Si-Based Composite Anode Materials for Lithium Ion Batteries

Chen Jingbo;  Zhao Hailei**;   He Jianchao;  Wang Mengwei   

  1. (School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)
  • Received:2008-11-04 Revised:2008-11-19 Online:2009-10-24 Published:2009-10-09
  • Contact: Zhao Hailei E-mail:hlzhao@mater.ustb.edu.cn

作为颇有前途的锂离子电池负极材料,硅基材料的研究日益受到重视。硅基负极材料在充放电循环中体积变化过大导致的循环性能差、首次库仑效率低等始终是阻碍其商业化的主要问题。纳米化、合金化和碳包覆是有效的解决措施。本文详细论述了TiB2、TiN、TiC作为基质的硅-化合物复合物,Fe-Si、Cu-Si、Ni-Si体系的硅-金属复合物和硅-碳复合物的研究进展。在硅-碳复合物的研究上,综述了分别采用热解法、球磨法、球磨-热解法、化学聚合法合成,以聚吡咯、聚氯乙烯、聚丙烯腈、间苯二酚-甲醛、柠檬酸、环氧树脂等为碳源的研究进展,同时也综述了Si/碳纳米管复合电极材料的研究情况。

As a kind of promising anode material for lithium ion batteries, silicon-based materials have been attracted much attention. The poor cycling stability due to the huge volume change during lithiation and delithiation and the low initial coulombic efficiency are the critical problems that limit their commercial application. Nanocrystallization, alloying and carbon-coating are effective measures to solve these issues. This article reviews the progress in silicon/compound composites in which TiB2, TiN and TiC act as the matrices, silicon-metal composites including Fe-Si, Cu-Si and Ni-Si, and silicon/carbon composites. In respect of the research on silicon/carbon composites, emphasis is put on the preparation methods like pyrolysis, milling, milling-pyrolysis and chemical polymerization, and the carbon sources such as polypyrrole, polyvinylchloride(PVC), polyacrylonitrile(PAN), resorcinol-formaldehyde resin, citric acid and epoxy resin. In addition, the progress in Si/carbon nanotubes composite materials is also discussed.

Contents
1 Introduction
2 Si-compound composites
3 Si-metal composites
3.1 Si-Fe composites
3.2 Si-Cu composites
3.3 Si-Ni composites
4 Si/C composites
4.1 Si/C composites prepared by pyrolysis
4.2 Si/C composites prepared by ball-milling
4.3 Si/C composites prepared by ball-milling and pyrolysis
4.4 Si/C composites prepared by other methods
4.5 Si/carbon nanotubes
5 Conclusions

中图分类号: 

()

[ 1 ]  Huggins R A. J . Power Sources , 1999 , 81 —82 : 13 —19
[ 2 ]  Netz A , Huggins R A. Solid State Ionics , 2004 , 175 : 215 —219
[ 3 ]  Moon T, Kim C , Park B. J . Power Sources , 2006 , 155 : 391 —394
[ 4 ]  Kim I , Blomgren G E , Kumta P N. J . Power Sources , 2004 , 130 :275 —280
[ 5 ]  Zhang XN , Pan GL , Li GR , et al . Solid State Ionics , 2007 , 178 :1107 —1112
[ 6 ]  Kim I S , Kumta P N , Blomgren G E. Electrochem. Solid-State Lett . , 2000 , 3 : 493 —496
[ 7 ]  Hanai K, Liu Y, Imanishi N , et al . J . Power Sources , 2005 , 146 :156 —160
[ 8 ]  Wu Y S , Lee Y H , Tsai Y L. J . Mater. Process Tech. , 2008 ,208 : 35 —41
[ 9 ]  Patel P , Kim I S , Kumta P N. Mat . Sci . Eng. B , 2005 , 116 :347 —352
[10 ]  EomJ Y, Park J W, Kwon H S , et al . J . Electrochem. Soc. ,2006 , 153 : A1678 —A1684
[11 ]  Rocka N L , Kumta P N. J . Power Sources , 2007 , 164 : 829 —838
[12 ]  任慢慢(Ren MM) , 周震(Zhou Z) , 高学平(Gao X P) 等. 化学进展(Progress in Chemistry) , 2008 , 20 : 771 —777
[13 ]  Dong H , Ai X P , Yang H X. Electrochem. Commun. , 2003 , 5 :952 —957
[14 ]  Dong H , Feng R X, Yang H X, et al . Electrochim. Acta , 2004 ,49 : 5217 —5222
[15 ]  Zuo P J , Yin G P , Zhao Jun , et al . Electrochim. Acta , 2006 , 52 :1527 —1531
[16 ]  Jayaprakash N , Kalaiselvi N , Doh C H. Intermetallics , 2007 , 15 :442 —450
[17 ]  Doh C H , Shin H M, Kim D H , et al . J . Alloys. Compd. , 2008 ,461 : 321 —325
[18 ]  NuLi Y, Wang B F , Yang J , et al . J . Power Sources , 2006 , 153 :371 —374
[19 ]  Kang YM, Park M S , Song M S , et al . J . Power Sources , 2006 ,162 : 1336 —1340
[20 ]  KimJ W, Ryu J H , Lee K T, et al . J . Power Sources , 2005 , 147 :227 —233
[21 ]  Khomenko V G, Barsukov V Z, Doninger J E , et al . J . Power Sources , 2007 , 165 : 598 —608
[22 ]  Kim I C , Byun D , Lee S , et al . Electrochim. Acta , 2006 , 52 :1532 —1537
[23 ]  Yoon S , Lee S I , Kim H , et al . J . Power Sources , 2006 , 161 :1319 —1323
[24 ]  Beaulieu L Y, Eberman K W, Turner R L , et al . Electrochem. Solid-State Lett . , 2001 , 4 : A137 —A140
[25 ]  Kang YM, Park M S , Lee J Y, et al . Carbon , 2007 , 45 : 1928 —1933
[26 ]  Kim H , Im D , Doo S G. J . Power Sources , 2007 , 174 : 588 —591
[27 ]  Liu Y, Hanai K, Horikawa K, et al . Mater. Chem. Phys. , 2005 ,89 : 80 —84
[28 ]  Lee H Y, Kim YL , Hong M K, et al . J . Power Sources , 2005 ,141 : 159 —162
[29 ]  Lee H Y, Lee S M. Electrochem. Commun. , 2004 , 6 : 465 —469
[30 ]  Wang Z, Tian W H , Liu X H , et al . Mater. Chem. Phys. , 2006 ,100 : 92 —97
[31 ]  Park MS , Rajendran S , Kang YM, et al . J . Power Sources , 2006 ,158 : 650 —653
[32 ]  Park M S , Lee Y J , Han Y S , et al . Mater. Lett . , 2006 , 60 :3079 —3083
[33 ]  Kasavajjula U , Wang C , Appleby A J . J . Power Sources , 2007 ,163 : 1003 —1039
[34 ]  Guo Z P , Jia D Z, Yuan L , et al . J . Power Sources , 2006 , 159 :332 —335
[35 ]  Zuo P J , Yin G P , Ma Y L. Electrochim. Acta , 2007 , 52 : 4878 —4883
[36 ]  Chen L B , Xie X H , Wang B F , et al . Mat . Sci . Eng. B , 2006 ,131 : 186 —190
[37 ]  Lee J H , Kim WJ , KimJ Y, et al . J . Power Sources , 2008 , 176 :353 —358
[38 ]  Wang K, He X M, Wang L , et al . Solid State Ionics , 2007 , 178 :115 —118
[39 ]  Kwon Y, Park G S , Cho J . Electrochim. Acta , 2007 , 52 : 4663 —4668
[40 ]  Ng S H , Wang J , Konstantinov K, et al . J . Power Sources , 2007 ,174 : 823 —827
[41 ]  Ng S H , Wang J , Wexler D , et al . Angew. Chem. Int . Ed. ,2006 , 45 : 6896 —6899
[42 ]  Dimov N , Kugino S , Yoshio M. Electrochim. Acta , 2003 , 48 :1579 —1587
[43 ]  Buqa H , Grogger C , Besenhard J O , et al . J . Power Sources , 2001 ,97/98 : 126 —128
[44 ]  Jung Y S , Lee K T, Oh S M. Electrochim. Acta , 2007 , 52 :7061 —7067
[45 ]  Obrovac MN , Christensen L. Electrochem. Solid-State Lett . , 2004 ,7 : A93 —A96
[46 ]  Ryu J H , Kim J W, Sung Y E , et al . Electrochem. Solid-State Lett . , 2004 , 7 : A306 —A309
[47 ]  Li J , Dahn J R. J . Electrochem. Soc. , 2007 , 154 : A156 —A161
[48 ]  Yang XL , Wen Z Y, Zhang L L , et al . J . Alloy. Compd. , 2008 ,464 : 265 —269
[49 ]  Yang X L , Wen Z Y, Xu X X, et al . J . Power Sources , 2007 ,164 : 880 —884
[50 ]  Yang J , Takeda Y, Imanishi N , et al . Solid State Ionics , 2002 ,152P153 : 125 —129
[51 ]  Kim I S , Blomgren G E , Kumta P N. J . Power Sources , 2004 , 130 :275 —280
[52 ]  Datta M K, Kumta P N. J . Power Sources , 2006 , 158 : 557 —563
[53 ]  Wang C S , Wu G T, Li W Z. J . Power Sources , 1998 , 76 : 1 —10
[54 ]  Datta M K, Kumta P N. J . Power Sources , 2007 , 165 : 368 —378第10 期陈敬波等 锂离子电池硅基复合物负极材料·2121 ·
[55 ]  Zheng Y, Yang J , Wang J L , et al . Electrochim. Acta , 2007 , 52 :5863 —5867
[56 ]  Chew S Y, Guo Z P , Wang J Z, et al . Electrochem. Commun. ,2007 , 9 : 941 —946
[57 ]  Yu M F , Files B S , Arepalli S , et al . Phys. Rev. Lett . , 2000 , 84 :5552 —5555
[58 ]  Thess A , Lee R , Nikolaev P , Dai H , et al . Science , 1996 , 273 :483 —487
[59 ]  Demczyk B G, Wang YM, Cumings J , et al . Mater. Sci . Eng. A ,2002 , 334 : 173 —178
[60 ]  Wang W, Kumta P N. J . Power Sources , 2007 , 172 : 650 —658
[61 ]  Kim I S , Kumta P N. J . Power Sources , 2004 , 136 : 145 —149
[62 ]  Kim I S , Blomgren G E , Kumta P N. J . Power Sources , 2004 , 130 :275 —280
[63 ]  Salver-Disma F , Lenain C , Beaudoin B , et al . Solid State Ionics ,1997 , 98 : 145 —158
[64 ]  Shu J , Li H , Yang R , et al . Electrochem. Commun. , 2006 , 8 :51 —54
[65 ]  Zhang Y, Zhang X G, Cheng H M, et al . Electrochim. Acta , 2006 ,51 : 4994 —5000
[66 ]  Lee K T, Jung Y S , Oh S M. J . Am. Chem. Soc. , 2003 , 125 :5652 —5653
[67 ]  Kim H , Cho J . Chem. Mater. , 2008 , 20 : 1679 —1681
[68 ]  Zhang W M, Hu J S , Guo Y G, et al . Adv. Mater. , 2008 , 20 :1160 —1165

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[9] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[10] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[11] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[12] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[13] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[14] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[15] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
阅读次数
全文


摘要

锂离子电池硅基复合物负极材料*