English
新闻公告
More
化学进展 2009, Vol. 21 Issue (09): 1945-1953 前一篇   后一篇

• 综述与评论 •

MAlH4(M=Li, Na)储氢材料*

陶占良**|陈军   

  1. (南开大学新能源材料化学研究所 |天津 |300071)
  • 收稿日期:2008-10-15 修回日期:2008-11-03 出版日期:2009-09-24 发布日期:2009-09-15
  • 通讯作者: 陶占良 E-mail:taozhl@nankai.edu.cn
  • 基金资助:

    863项目;国家自然科学基金

MAlH4(M=Li,Na ) Materials for Hydrogen Storage

Tao Zhanliang**|Chen Jun   

  1. (Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China)
  • Received:2008-10-15 Revised:2008-11-03 Online:2009-09-24 Published:2009-09-15
  • Contact: Tao Zhanliang E-mail:taozhl@nankai.edu.cn

氢能是一种新型的清洁能源,有望替代碳经济,而氢的储存是氢能应用的关键。近年来,研究集中在具有储氢容量高和可逆性好等优点的固态储氢材料上。许多新型储氢材料不断出现,其中以MAlH4(M=Li, Na)为代表的金属复合氢化物体系被认为是最有前景的储氢材料之一。本文综述了MAlH4(M=Li, Na)作为可逆储氢材料的研究现状,主要从吸放氢反应、储氢性能、反应机理、理论计算和存在的问题等方面进行了讨论,并指出其相关发展趋势。

Hydrogen is an environmentally cleaner source of energy, hopeful to replace carbon economy. The availability of feasible methods for hydrogen storage is one of the keys for large scale application. In recent years, solid materials most actively investigated can be regarded for their high hydrogen storage capacity and good reversibility. As a result, many new hydrogen storage materials have been developed. Among them, one of the most promising systems at present is metal complex hydride, which MAlH4(M=Li, Na) as a typical alanate. In this paper, the recent studies on MAlH4(M=Li, Na) as storage hydrogen materials are reviewed. The hydrogenation/dehydrogenation reaction, hydrogen storage properties, reaction mechanisms, theoretical calculations and remaining problems are discussed. And the development trend of MAlH4(M=Li, Na) is also introduced.

Contents
1 Introduction
2 Properties and structures of MAlH4 (M=Li,Na)
3 De-/rehydrogenation of undoped MAlH4 (M=Li,Na)
4 De-/rehydrogenation of doped MAlH4 (M=Li,Na)
4.1 Dopants and doping methods of MAlH4 (M=Li,Na)
4.2 Catalysis mechanism of doped MAlH4 (M=Li,Na)
4.3 Theoretical investigation of MAlH4 (M=Li,Na)
4.4 Kinetic properties of doped NaAlH4
5 Summary and outlook

中图分类号: 

()

[ 1 ]  Schlapbach L , Zuttel A. Nature , 2001 , 414 : 353 —358
[ 2 ]  孙大林(Sun D L) , 陈国荣(Chen G R) , 江建军(Jiang J J )等. 材料导报(Materials Review) , 2004 , 18 : 72 —75
[ 3 ]  许炜(Xu W) , 陶占良(Tao Z L) , 陈军(Chen J ) . 化学进展(Progress in Chemistry) , 2006 , 18 : 200 —210
[ 4 ]  Orimo S I , Nakamori Y, Eliseo J R , et al . Chem. Rev. , 2007 ,107 : 4111 —4132
[ 5 ]  刘淑生(Liu S S) , 孙立贤(Sun L X) , 徐芬(Xu F) . 化学进展(Progress in Chemistry) , 2008 , 20 : 280 —287
[ 6 ]  周理( Zhou L) . 世界科技研究与发展(World Sci .2Tech.R&D) , 2006 , 28 : 17 —32
[ 7 ]  杨勇(Yang Y) , 沈泓滢(Shen H Y) , 邢航(Xing H) 等. 化学进展(Progress in Chemistry) , 2006 , 18 : 648 —656
[ 8 ]  Struzhkin V V , Millitzer B , Mao WL , et al . Chem. Rev. , 2007 ,107 : 4133 —4151
[ 9 ]  Seayad A M, Antonelli D M. Adv. Mater. , 2004 , 16 : 765 —777
[10 ]  Van den Berg A WC , Arean C O. Chem. Comm. , 2008 , 668 —681
[11 ]  Bogdanovic B , Schwickardi M. J . Alloys Compd. 1997 , 253/254 :1 —9
[12 ]  Hauback B C , Brinks H W, Jensen CM, et al . J . Alloys Compd. ,2003 , 358 : 142 —145
[13 ]  Garner W E , Haycock E W. Proc. Roy. Soc. London A , 1952 ,211 : 335 —351
[14 ]  Clasen H. Angew. Chem. , 1961 , 73 : 322 —331
[15 ]  Ashby E C , Brendel G R , Redman H E. Inorg. Chem. , 1963 , 2 :499 —504
[16 ]  Wang J , Ebner A D , Ritter J A. J . Am. Chem. Soc. , 2006 , 128 ,5949 —5954
[17 ]  Andreasen A , Vegge T, Pedersen A S. J . Solid State Chem. , 2005 ,178 : 3672 —3678
[18 ]  孙泰(Sun T) , 黄存可(Huang C K) , 董汉武(Dong H W) 等.西安交通大学学报(Journal of Xi′an Jiaotong University) , 2008 ,42 : 256 —260
[19 ]  Chen J , Kuriyama N , Xu Q , et al . J . Phys. Chem. B , 2001 , 105 :11214 —11220
[20 ]  Jensen C M, Zidan R , Mariels N , et al . Int . J . Hydrogen Energy ,1999 , 24 : 461 —465
[21 ]  Fichtner M, Fuhr O , Kircher O , Rothe J . Nanotechnology , 2003 ,14 : 778 —785
[22 ]  Wang P , Kang X D , Cheng H M. J . Phys. Chem. B , 2005 , 109 :20131 —20136
[23 ]  Kang X D , Wang P , Cheng M H. J . Phys. Chem. C , 2007 , 111 :4879 —4884
[24 ]  肖学章(Xiao X Z) , 陈立新(Chen L X) , 王新华(Wang X H)等. 物理化学学报(Acta Phys.2Chim. Sin. ) , 2006 , 22 : 1511 —1515
[25 ]  Bogdanovic B , Brand R A , Marjanovic A , et al . J . Alloys Compd. ,2000 , 302 : 36 —58
[26 ]  Balde C P , Hereijgers B P C , Bitter J H , de Jong K P. Angew.Chem. Int . Ed. , 2006 , 45 : 3501 —3503
[27 ]  Bogdanovic B , Felderhoff M, Pommerin A , et al . Adv. Mater. ,2006 , 18 : 1198 —1201
[28 ]  De Dompablo M E A Y, Ceder G. J . Alloys Compd. , 2004 , 364 :6 —12
[29 ]  Bellosta von Colbe J M, Bogdanovic’ B , Felderhoff M, et al . J .Alloys Compd. , 2004 , 370 : 104 —109
[30 ]  Majzoub E H , Gross K J . J . Alloys Compd. , 2003 , 356P357 :363 —367
[31 ]  Weidenthaler C , Pommerin A , Felderhoff M, et al . Phys. Chem.Chem. Phys. , 2003 , 5 : 5149 —5153
[32 ]  Gross KJ , Majzoub E H , Spangler S W. J . Alloys Compd. , 2003 ,356P357 : 423 —428
[33 ]  Balema V P , Balema L. Phys. Chem. Chem. Phys. , 2005 , 7 :1310 —1314
[34 ]  Sun D L , Kiyobayashi T, Takeshita H T, et al . J . Alloys Compd. ,2002 , 337 : L8 —L11
[35 ]  Inigucz J , Yildirim T, Udovic TJ , et al . Phys. Rev. B , 2004 , 70 :art . no. 060101
[36 ]  Araujo C M, Ahuja R , Guillen J MO , Jena P. Appl . Phys. Lett . ,2005 , 86 : art . no. 251913
[37 ]  Gunaydin H , Houk K N , Ozolin ′íV. P. Natl . Acad. Sci . USA. ,2008 , 105 : 3673 —3677
[38 ]  Yin L C , Wang P , Kang X D , et al . Phys. Chem. Chem. Phys. ,2007 , 9 : 1499 —1502
[39 ]  Kang J K, Lee J Y, Muller R P , et al . J . Chem. Phys. , 2004 ,121 : 10623 —10633
[40 ]  方方(Fang F) , 张晶(Zhang J ) , 朱健(Zhu J ) 等. 金属学报(Acta Metallurgica Sinica) , 2007 , 43 : 96 —98
[41 ]  Kircher O , Fichtner M. J . Appl . Phys. , 2004 , 95 : 7748 —7753
[42 ]  Sandrock G, Gross K, Thomas G. J . Alloys Compd. , 2002 , 339 :299 —308
[43 ]  Kiyobayashi T, Srinivasan S S , Sun D L , Jensen C M. J . Phys.Chem. A , 2003 , 107 : 7671 —7674
[44 ]  Lovvik O M, Swang O. J . Alloys Compd. , 2005 , 404P406 : 757 —761
[45 ]  Tang X, Opalka SM, Laube B L , et al . J . Alloys Compd. , 2007 ,446P447 : 228 —231
[46 ]  Opalka S M, L? vvik O M, Brinks H W, et al . Inorg. Chem. ,2007 , 46 : 1401 —1409

[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[5] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[8] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[9] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[10] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[11] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[12] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[13] 张世亮, 姚淇露, 卢章辉*. 肼硼烷的合成及产氢[J]. 化学进展, 2017, 29(4): 426-434.
[14] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[15] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
阅读次数
全文


摘要

MAlH4(M=Li, Na)储氢材料*