English
新闻公告
More
化学进展 2009, Vol. 21 Issue (09): 1888-1894 前一篇   后一篇

• 综述与评论 •

糖蛋白/糖肽的分离富集方法*

曹晶1,2;聂爱英2;陈瑶函2;王胜1;陆豪杰1,2;杨芃原1,2**   

  1. (1. 复旦大学化学系  |上海 200433; 2. 复旦大学生物医学研究院  |上海 200032)
  • 收稿日期:2008-09-11 修回日期:2008-11-05 出版日期:2009-09-24 发布日期:2009-09-15
  • 通讯作者: 杨芃原 E-mail:pyyang@fudan.edu.cn
  • 基金资助:

    No. 20735005;国家自然科学基金

Separation and Enrichment of Glycoproteins/Glycopeptides

Cao Jing1,2; |Nie Aiying2; |Chen Yaohan2; |Wang Sheng1; |Lu Haojie1,2; |Yang Pengyuan1,2**   

  1. (1.Department of Chemistry, Fudan University, Shanghai 200433, China|2.Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China)
  • Received:2008-09-11 Revised:2008-11-05 Online:2009-09-24 Published:2009-09-15
  • Contact: Yang Pengyuan E-mail:pyyang@fudan.edu.cn

蛋白质糖基化是一种重要的翻译后修饰,糖基化对蛋白质的结构和功能有着重要的影响。目前,作为蛋白质组学的一个组成部分,糖蛋白质组学是备受关注的研究热点。而从复杂的生物样品体系中富集糖蛋白/ 糖肽是蛋白质糖基化研究的重点和难点,本文就糖蛋白/糖肽分离富集方法的研究进展和应用作了简要概述。这些方法包括常用的凝集素亲和法、硼酸法、肼化学法和亲水作用法,还包括分子筛法、强阳离子交换法等新方法。

Protein glycosylation as an important post-translational modifications has a significant effect on the structures and functions of proteins.As a section of proteomics, glycoproteomics is in the spotlight currently, and the efficient separation and enrichment of glycoproteins/glycopeptides from complex biological samples is the key and difficult point of glycoproteome research. In this paper, the progress in methods for the separation and enrichment of glycoproteins/glycopeptides and their applications are overviewed. These methodologies not only include most-often-used methods such as lectin-based affinity chromatography, boronic acid method, hydrazide chemistry and hydrophilic chromatography, but also some novel methods, for example, size exclusion chromatography and strong cation exchange enrichment.

Contents
1 Introduction
2 Types and current research status of protein glycosylation
3 Methods for separation and enrichment of glycoproteins/glycopeptides and their applications
3.1 Lectin affinity chromatography
3.2 Boronic acid method
3.3 Hydrazide chemistry
3.4 Hydrophilic chromatography
3.5 Other methods
4 Conclusion

中图分类号: 

()

[ 1 ]  Hagglund P , Bunkenborg J , Roepstorff P , et al . J . Proteome Res. ,2004 , 3 : 556 —566
[ 2 ]  Rudd P M, Elliott T, Dwek R A , et al . Science , 2001 , 23 :2370 —2376
[ 3 ]  Spiro R G. Glycobiology , 2002 , 12 : 43R —56R
[ 4 ]  Sun B Y, Ranish J A , Utleg A G, et al . Mol . Cell . Proteomics ,2007 , 6 : 141 —149
[ 5 ]  Packer N. Proteomics , 2006 , 6 : 6121 —6123
[ 6 ]  Wang L J , Li F X, Gao Y H , et al . Mol . Cell . Proteomics , 2006 ,5 : 560 —562
[ 7 ]  Dai Z, Fan J , Liu Y K, et al . Electrophoresis , 2007 , 28 : 4382 —4391
[ 8 ]  Dai Z, Liu Y K, Cui J F , et al . Proteomics , 2006 , 6 : 5857 —5867
[ 9 ]  Vosseller K, Trinidad J C , Chalkley R J , et al . Mol . Cell .Proteomics , 2006 , 5 : 923 —934
[10 ]  Yang Z P , Hancock W S. J . Chromatogr. A , 2004 , 1053 : 79 —88
[11 ]  Zhao J , Simeone D M, Heidt D , et al . J . Proteome Res. , 2006 , 5 :1792 —1802
[12 ]  Drake R R , Schwegler E E , Malik G J , et al . Mol . Cell .Proteomics , 2006 , 5 : 1957 —1967
[13 ]  Kaji H , Saito H , Yamauchi Y, et al . Nature Biotech. , 2003 , 21 :667 —672
[14 ]  Schwientek T, Mandel U , Roth U , et al . Proteomics , 2007 , 7 :3264 —3277
[15 ]  Zhao J , Qiu WL , Simeone D M, Lubman D M. J . Proteome Res. ,2007 , 6 : 1126 —1138
[16 ]  Qiu R Q , Regnier F E. Anal . Chem. , 2005 , 77 : 2802 —2809
[17 ]  Durham M,Regnier F E. J . Chromatogr. A , 2006 , 1132 : 165 —173
[18 ]  Madera M, Mechref Y, Klouckova I , Novotny M V. J . Proteome Res. , 2006 , 5 : 2348 —2363
[19 ]  Madera M, Mechref Y, Novotny M V. Anal . Chem. , 2005 , 77 :4081 —4090
[20 ]  Monzo A , Bonn G K, Guttman A. Trends Anal . Chem. , 2007 , 26 :423 —432
[21 ]  Liu X C. Chinese J . Chromatogra , 2006 , 24 (1) : 73 —80
[22 ]  Sparbier K, Wenzel T, Kostrzewa M. J . Chromatogr. B , 2006 ,840 :29 —36
[23 ]  Zhang Q B , Tang N , Brock J WC , et al . J . Proteome Res. , 2007 ,6 : 2323 —2330
[24 ]  Zhang H , Li X J , Martin D B , Aebersold R. Nature Biotech. ,2003 , 21 : 660 —666
[25 ]  Liu T, Qian W J , Gritsenko M A , et al . Mol . Cell . Proteomics ,2006 , 5 : 1899 —1913
[26 ]  Liu T, Qian W J , Gritsenko M A , et al . J . Proteome Res. , 2005 ,4 : 2070 —2080
[27 ]  Lewandrowski U , Moebius J , Walter U , Sickmann A. Mol . Cell .Proteomics , 2006 , 5 : 226 —233
[28 ]  Ramachandran P , Boontheung P , Xie Y M, et al . J . Proteome Res. , 2006 , 5 : 1493 —1503
[29 ]  Zhang H , Yi E C , Li X J , et al . Mol . Cell . Proteomics , 2005 , 4 :144 —155
[30 ]  Bernhard O K, Kapp E A , Simpson R J . J . Proteome Res. , 2007 ,6 : 987 —995
[31 ]  Zhou Y, Aebersold R , Zhang H. Anal . Chem. , 2007 , 79 : 5826 —5837
[32 ]  Tian Y, Zhou Y, Elliott S , et al . Nature Protocols , 2007 , 2 : 334 —339
[33 ]  Shimizu Y, Nakata M, Kuroda Y, et al . Carbohydr. Res. , 2001 ,332 (4) : 381 —388
[34 ]  Wada Y, Tajiri M, Yoshida S. Anal . Chem. , 2004 , 76 : 6560 —6565
[35 ]  Wuhrer M, Koeleman C A M, Hokke C H , Deelder A M. Anal .Chem. , 2005 , 77 : 886 —894
[36 ]  Ding W, Hill J J , Kelly J . Anal . Chem. , 2007 , 79 : 8891 —8899
[37 ]  Gerardo A M, Atwood J , Pierce M, et al . J . Proteome Res. , 2006 ,5 : 701 —708
[38 ]  Ghesquière B , Buyl L , Gevaert K, et al . J . Proteome Res. , 2007 ,6 : 4304 —4312
[39 ]  Lewandrowski U , Zahedi R P , Sickmann A , et al . Mol . Cell .Proteomics , 2007 , 6 : 1933 —1941
[40 ]  Wells L , Vosseller K, Cole R N , et al . Mol . Cell . Proteomics ,2002 , 1 : 791 —804
[41 ]  Comer F I , Vosseller K, Wells L , et al . Anal . Biochem. , 2001 ,293 : 169 —177
[42 ]  Boeggeman E , Ramakrishnan B , Kilgore C , et al . Bioconjugate Chem. , 2007 , 18 : 806 —814
[43 ]  Ball L E , Berkaw M N , Buse M G. Mol . Cell . Proteomics , 2006 ,5 : 313 —323
[44 ]  AndréM, Morelle W, Planchon S , et al . Proteomics , 2007 , 7 :3880 —3895
[45 ]  Pan S , Wang Y, Quinn J F , et al . J . Proteome Res. , 2006 , 5 :2769 —2779
[46 ]  Monzo A , Bonn G K, Guttman A. Anal . Bioanal Chem. , 2007 ,389 : 2097 —2102
[47 ]  Kubota K, Sato Y, Suzuki Y, et al . Anal . Chem. , 2008 , 80 :3693 —3698

[1] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[2] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[3] 张华东, 李攻科*, 胡玉斐*. 埃洛石纳米管在分离富集中的应用[J]. 化学进展, 2018, 30(2/3): 198-205.
[4] 丁鹏, 陈掀, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. 基于纳米粒子的糖蛋白/糖肽分离富集方法[J]. 化学进展, 2015, 27(11): 1628-1639.
[5] 毕鹏禹, 常林, 牟瑛琳, 刘建友, 吴昱, 魏芸. 溶剂浮选技术的研究现状与展望[J]. 化学进展, 2013, 25(08): 1362-1374.
[6] 常姗燕, 刘夫锋*. 三磷酸腺苷结合盒式转运体的分子模拟[J]. 化学进展, 2013, 25(07): 1208-1218.
[7] 陈旭伟, 毛全兴, 王建华*. 离子液体在蛋白质萃取分离中的应用[J]. 化学进展, 2013, 25(05): 661-668.
[8] 程功, 王志刚, 刘彦琳, 张吉林*, 孙德慧, 倪嘉缵. 基于纳米结构材料的磷酸化蛋白/多肽富集和分析[J]. 化学进展, 2013, 25(04): 620-632.
[9] 李鹏章, 王粤博*. 蛋白质组学中磷酸化肽的常用富集方法[J]. 化学进展, 2012, (9): 1785-1793.
[10] 李卓娜, 周群芳, 刘稷燕, 史亚利, 蔡亚岐, 江桂斌. 多环麝香(PCMs)的环境行为及毒性效应[J]. 化学进展, 2012, 24(04): 606-615.
[11] 支田田, 程丽华, 徐新华, 张林, 陈欢林. 藻类去除水体中重金属的机理及应用[J]. 化学进展, 2011, 23(8): 1782-1794.
[12] 王胜, 邹霞, 张延. 基于质谱的蛋白质O-糖基化分析研究进展[J]. 化学进展, 2010, 22(12): 2428-2435.
[13] 张英,黄琳娟,王仲孚. 糖蛋白的凝胶电泳和电印迹染色鉴定技术*[J]. 化学进展, 2008, 20(0708): 1158-1164.
[14] 李娟,郑基深,沈非,方葛敏,郭庆祥,刘磊. 蛋白质的化学全合成*[J]. 化学进展, 2007, 19(012): 1866-1882.
[15] 徐溢,张剑,徐平洲,卢倩,曾雪,温志渝. 微流控芯片系统中固液双相分离富集技术[J]. 化学进展, 2007, 19(01): 186-192.
阅读次数
全文


摘要

糖蛋白/糖肽的分离富集方法*