English
新闻公告
More
化学进展 2009, Vol. 21 Issue (09): 1880-1887 前一篇   后一篇

• 综述与评论 •

四氧化三铁纳米粒子表面接枝聚合制备磁性聚合物微球*

周莅霖|况锦铭|袁金颖**   

  1. (清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084)
  • 收稿日期:2008-09-15 修回日期:2008-10-15 出版日期:2009-09-24 发布日期:2009-09-15
  • 通讯作者: 袁金颖 E-mail:yuanjy@mail.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金

Preparation of Magnetic Hybrid Nanoparticles via Surface-Initiated Polymerization from Magnetite

Zhou Lilin; |Kuang Jinming; |Yuan Jinying**   

  1. (Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China)
  • Received:2008-09-15 Revised:2008-10-15 Online:2009-09-24 Published:2009-09-15
  • Contact: Yuan Jinying E-mail:yuanjy@mail.tsinghua.edu.cn
  • Supported by:

    National Natural Science Foundation of China

四氧化三铁聚合物微球因其结合了纳米四氧化三铁的超顺磁性和有机聚合物的多种特殊性质,如生物相容性、刺激响应性、荧光性,良好的分散性等,而在生物、医学、催化、分离等领域有着重要的应用前景,得到了深入研究。本文按聚合方法分类,综述了利用普通自由基聚合、原子转移自由基聚合(ATRP)、可逆加成断裂链转移聚合(RAFT)、氮氧稳定自由基聚合(NMRP)、活性开环聚合(ROP)等方法在四氧化三铁纳米粒子表面进行接枝聚合制备磁性聚合物微球的研究进展。

Magnetic hybrid nanoparticles have superparamagnetism from magnetite and lots of special properties from polymer parts, such as biocompatibility, stimuli-responsivity, fluorescence, and the dispersion of hybrid nanoparticles, are obviously improved compared to that of magnetite. The research of magnetic hybrid nanoparticles have been intensively pursued because of their potential application in biomedicine, catalysis, separation and other fields. In this paper, the research progress of the preparation of magnetic hybrid nanoparticles via surface-initiated polymerization is reviewed from polymerization mechanism, including traditional radical polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT), nitroxide-mediated radical polymerization (NMRP), and ring-opening polymerization (ROP).

Contents
1 Introduction
2 Preparation of magnetic hybrid nanoparticles via surface-initiated polymerization from magnetite
2.1 Traditional radical polymerization
2.2 Living polymerization
3 Conclusion and prospects

中图分类号: 

()

[ 1 ]  于文广(Yu W G) , 张同来(Zhang T L) , 张建国(Zhang J G)等. 化学进展(Progress in Chemistry) , 2007 , 19 (6) : 884 —892
[ 2 ]  Kim J , Lee J E , Lee S H , et al . Adv. Mater. , 2008 , 20 : 478 —483
[ 3 ]  Zhang L , Qiao S Z, Jin Y G, et al . Adv. Mater. , 2008 , 20 :805 —809
[ 4 ]  Konishi Y, Nomura T, Mizoe K. Hydrometallurgy , 2004 , 74 : 57 —65
[ 5 ]  Franger S , Berthet P , Berthon J . J . Solid State Electr. , 2004 , 8 :218 —223
[ 6 ]  Wu M Z, Xiong Y, Jia Y S , et al . Chem. Phys. Lett . , 2005 , 401 :374 —379
[ 7 ]  Wan S R , Huang J S , Yan H S , et al . J . Mater. Chem. , 2006 ,16 : 298 —303
[ 8 ]  Yao K L , Tao J , Liu Z L , et al . J . Mater. Sci . Technol . , 2004 ,20 : 417 —420
[ 9 ]  Pinna N , Grancharov S , Beato P , et al . Chem. Mater. , 2005 , 17 :3044 —3049
[10 ]  Perez J M, O’Loughin T, Simeone FJ , et al . J . Am. Chem. Soc. ,2002 , 124 : 2856 —2857
[11 ]  Fortin J P , Wilhelm C , Servais J , et al . J . Am. Chem. Soc. ,2007 , 129 : 2628 —2635
[12 ]  Muller-Schulte D , Schmitz-Rode T. J . Magn. Magn. Mater. , 2006 ,302 : 267 —271
[13 ]  Bucak S , Jones D A , Laibinis P E , et al . Biotechnol . Prog. , 2003 ,19 : 477 —484
[14 ]  Gupta A K, Gupta M. Biomaterials , 2005 , 26 : 3995 —4021
[15 ]  Dey T. J . Nanosci . Nanotechnol . , 2006 , 6 : 2479 —2483
[16 ]  An L J , Li W, Nie YR , et al . J . Colloid Interf . Sci . , 2005 , 288 :503 —507
[17 ]  Lubbe A S , Bergemann C , Riess H. Cancer Res. , 1996 , 56 :4686 —4693
[18 ]  Lu A H , Salabas E L , Schuth F. Angew. Chem. Int . Ed. , 2007 ,46 : 1222 —1244
[19 ]  邓勇辉(Deng Y H) , 汪长春(Wang C C) , 杨武利(Yang WL)等. 高分子通报(Chinese Polymer Bulletin) , 2006 , 5 : 27 —36
[20 ]  Lee J , Lee Y, Kim J , et al . Small , 2008 , 4 : 143 —152
[21 ]  Deng Y H , Yang W L , Wang C C , et al . Adv. Mater. , 2003 , 15 :1729 —1732
[22 ]  Guo J , Yang W L , Wang C C , et al . Small , 2005 , 1 : 737 —743
[23 ]  Deng Y H , Wang C C , Shen X Z, et al . Chem. Eur. J . , 2005 ,11 : 6006 —6013
[24 ]  Guo J , Yang W L , Wang C C , et al . Chem. Mater. , 2006 , 18 :5554 —5562
[25 ]  Wu Y, Guo J , Yang W L , et al . Polymer , 2006 , 47 : 5287 —5294
[26 ]  Sun Y B , Ding X B , Zheng Z H , et al . Macromol . Rapid Commun. , 2007 , 28 : 346 —351
[27 ]  Yang S , Liu H R. J . Mater. Chem. , 2006 , 16 : 4480 —4487
[28 ]  Ge J P , Huynh T, Yin YD , et al . Nano Lett . , 2008 , 8 : 931 —934
[29 ]  Matsuno R , Yamamoto K, Takahara A , et al . Chem. Mater. ,2003 , 15 : 3 —5
[30 ]  Kobayashi M, Matsuno R , Takahara A , et al . Sci . Tech. Adv.Mater. , 2006 , 7 : 617 —628
[31 ]  Matsuno R , Yamamoto K, Takaraha A , et al . Macromolecules ,2004 , 37 : 2203 —2209
[32 ]  Wang W C , Neoh K G, Kang E T. Macromol . Rapid Commun. ,2006 , 27 : 1665 —1669
[33 ]  Schmidt A M. Macromol . Rapid Commun. , 2005 , 26 : 93 —97
[34 ]  Schmidt A M. J . Magn. Magn. Mater. , 2005 , 289 : 5 —8
[35 ]  Chen F H , Gao Q , Ni J Z, et al . J . Magn. Magn. Mater. , 2008 ,320 : 1921 —1927
[36 ]  Tian J , Feng Y K, Xu YS. Macromol . Res. , 2006 , 14 : 209 —213
[37 ]  Tian J , Feng Y K, Xu YS. J . Polym. Res. , 2006 , 13 : 343 —347
[38 ]  Marutani E , Yamamoto S , Fukuda T, et al . Polymer , 2004 , 45 :2231 —2235
[39 ]  Hu B , Fuchs A , Huseyin S , et al . Polymer , 2006 , 47 : 7653 —7663
[40 ]  Raghuraman G K, Dhamodharan R. J . Nanosci . Nanotechnol . ,2006 , 6 : 2018 —2024
[41 ]  Sun Y B , Ding X B , Zheng Z H , et al . Eur. Polym. J . , 2007 , 43 :762 —772
[42 ]  Babu K, Dhamodharan R. Nanoscale Res. Lett . , 2008 , 3 : 109 —117
[43 ]  Lei Z L , Li Y L , Wei X Y. J . Solid State Chem. , 2008 , 181 :480 —486
[44 ]  Frimpong R A , Hilt J Z. Nanotechnology , 2008 , 19 : art . no.175101
[45 ]  Wuang S C , Neoh K G, Kang E T, et al . Adv. Funct . Mater. ,2006 , 16 : 1723 —1730
[46 ]  Gelbrich T, Feyen M, Schmidt A M. Z. Phys. Chem. , 2006 , 220 :41 —49
[47 ]  Kaiser A , Gelbrich T, Schmidt A M. J . Phys. Condens. Matter ,2006 , 18 : S2563 —S2580
[48 ]  Gelbrich T, Feyen M, Schmidt A M. Macromolecules , 2006 , 39 :3469 —3472
[49 ]  Parvin S , Matsui J , Sato E , et al . J . Colloid Interf . Sci . , 2007 ,313 : 128 —134
[50 ]  Parvin S , Sato E , Matsui J , et al . Polym. J . , 2006 , 38 : 1283 —1287
[51 ]  Bai Y P , Teng B , Li Z L , et al . Macromol . Rapid Commun. ,2006 , 27 : 2107 —2112
[52 ]  Zhou Y, Wang S X, Ding B J , et al . Chem. Eng. J . , 2008 , 138 :578 —585
[53 ]  Huang J S , Han B Z, Yan H S , et al . J . Mater. Chem. , 2007 ,17 : 3812 —3818
[54 ]  An L J , Li Z Q , Yang B , et al . Chem. Lett . , 2005 , 34 : 652 —653
[55 ]  Zhou L L , Yuan J Y, Yuan W Z, et al . J . Magn. Magn. Mater. ,2009 , 321 : 2799 —2804
[56 ]  Zhou L L , Yuan J Y, Yuan W Z, et al . Mater. Lett . , 2009 , 63 :1567 —1570

[1] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
[2] 张茜, 任其龙, 杨亦文, 邢华斌, 苏宝根, 鲍宗必. 硼吸附材料及其性能[J]. 化学进展, 2015, 27(1): 125-134.
[3] 杨正龙, 徐晓黎, 赵宇馨. 硫醇-烯/炔点击化学制备有机/无机杂化材料[J]. 化学进展, 2014, 26(06): 996-1004.
[4] 付艳艳, 严秀平*. 金属-有机骨架复合材料[J]. 化学进展, 2013, 25(0203): 221-232.
[5] 刘艳红, 周林成, 惠新平, 赵光辉, 李彦锋. 超顺磁性纳米催化剂在有机合成中的应用[J]. 化学进展, 2012, 24(0203): 327-337.
[6] 姚敏, 王嘉骏, 顾雪萍, 冯连芳. POSS基树枝状大分子的合成与应用[J]. 化学进展, 2012, 24(0203): 405-413.
[7] 范群英, 詹红兵. 有机-无机杂化骨修复材料[J]. 化学进展, 2012, 24(01): 54-60.
[8] 刘金丽 周荫庄. 含钒无机有机杂化材料的合成、结构与性质[J]. 化学进展, 2010, 22(01): 51-57.
[9] 刘琼 杨婷婷 高庆 袁建军 程时远. 聚合物/SiO2杂化材料在药物控制释放中的应用*[J]. 化学进展, 2009, 21(12): 2689-2695.
[10] 王志飞 杨雯 何农跃. 超顺磁性纳米颗粒为催化剂载体的研究* [J]. 化学进展, 2009, 21(10): 2053-2059.
[11] 许松伟,张杰,杨占平,曹建华,马晓龙,姜忠义. 载体对包埋酶微环境的影响分析[J]. 化学进展, 2008, 20(01): 163-170.
[12] 吴翠明,徐铜文,杨伟华. 烷氧基硅烷溶胶-凝胶反应机理*[J]. 化学进展, 2007, 19(01): 80-86.
[13] 潘其维 范星河 陈小芳 周其凤 . 六面体倍半硅氧烷(POSS)杂化材料[J]. 化学进展, 2006, 18(05): 616-621.
[14] 刘冰 强亮生. 溶胶-凝胶法制备光学杂化功能材料[J]. 化学进展, 2005, 17(01): 85-90.
[15] 唐新德,张其震,周其凤. 树状大分子/金属(化合物)纳米复合材料*[J]. 化学进展, 2003, 15(02): 129-.