English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1437-1451 DOI: 10.7536/PC200688   后一篇

• 综述 •

二维磁性纳米材料的可控合成及磁性调控

李巍1,2,3, 杨子煜1,2,3, 侯仰龙1,2,3,**(), 高松4   

  1. 1.北京大学工学院 北京 100871
    2.磁电功能材料与器件北京市重点实验室 北京 100871
    3.北京大学工程科学与新兴技术高精尖创新中心 北京 100871
    4.北京大学化学与分子工程学院 北京 100871
  • 收稿日期:2020-06-29 修回日期:2020-07-24 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 侯仰龙
  • 基金资助:
    国家重点研发计划(2017YFA0206301); 国家自然科学基金项目资助(51631001)

Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials

Wei Li1,2,3, Ziyu Yang1,2,3, Yanglong Hou1,2,3,**(), Song Gao4   

  1. 1. College of Engineering, Peking University, Beijing 100871, China
    2. Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing 100871, China
    3. Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing 100871, China
    4. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2020-06-29 Revised:2020-07-24 Online:2020-10-24 Published:2020-09-02
  • Contact: Yanglong Hou
  • About author:
  • Supported by:
    National Key R&D Program of China(2017YFA0206301); National Natural Science Foundation of China(51631001)

自旋电子学的研究重点在于同时利用电子的电荷和自旋两个自由度对信息进行处理和存储,其具有运行速度快、存储密度高和能耗低等优势。毫无疑问,发展二维磁性纳米材料的可控合成方法及磁性调控策略,对于新型自旋电子学器件的构筑具有重要的科学意义和应用价值。然而,目前得到的二维磁性纳米材料的种类十分有限,而且合成方法及磁性调控手段相对单一,极大地限制了该领域的发展。本文首先根据磁性的来源,对二维磁性纳米材料进行了分类,介绍了诱导产生的磁性和具有本征磁性的二维纳米材料,然后详细地归纳了二维磁性纳米材料常见的合成方法,如机械剥离法、电化学剥离法、化学气相沉积法以及液相合成方法等。此外,着重总结了二维材料磁性的主要调控手段,最后展望了该领域遇到的瓶颈、未来的研究重点及应用前景。

The research focus of spintronics is to process and store the information by manipulating both the charge and spin degrees of freedom for its advantages of fast device operation, high storage density and low energy consumption. It is no doubt that developing controllable preparation method and magnetism control strategy of two-dimensional (2D) magnetic nanomaterials are of great significance and value for the fabrication of new-type spintronic devices. However, a relatively limited range of 2D magnetic nanomaterials can be achieved yet, and the preparation method as well as magnetism control strategy are relatively unvarying, which greatly hinders the development of this field. In this review, 2D magnetic nanomaterials are first categorized according to the origin of the magnetism, and induced magnetism and intrinsic magnetism in 2D nanomaterials have been introduced respectively. Then the existing preparation methods of the 2D magnetic nanomaterials, such as mechanical exfoliation, electrochemical exfoliation, chemical vapor deposition, liquid-phase synthesis and so on, are summarized in detail. Afterwards, the predominant magnetism control strategies of 2D nanomaterials are highlighted as well. Finally, the bottlenecks and future developments of this booming field are outlined and prospected.

Contents

1 Introduction

2 Classification of 2D magnetic nanomaterials

2. 1 Induced magnetism in nonmagnetic 2D materials

2.2 Intrinsic magnetism in pristine 2D materials .

3 Synthetic methods of 2D magnetic nanomaterials

3. 1 Mechanical exfoliation

3.2 Electrochemical exfoliation .

3.3 Sonication-assisted liquid-phase exfoliation

3.4 Chemical vapor deposition

3.5 Molecular beam epitaxy

3.6 Liquid-phase synthesis

4 Magnetism control of 2D magnetic nanomaterials

4.1 Electric-field control

4.2. Electrostatic doping

4.3 Pressure control .

4.4 Other strategies

5 Conclusion and outlook

()
图1 (a) 氩离子轰击之后石墨表面的STM图像; (b) 在6 K测试条件下,石墨表面和碳空位处的dI/dV谱[31];(c) 超掺杂技术制备的高氮含量石墨烯的TEM图像;(d) 2 K条件下,未掺杂石墨烯、未经氟化处理氮掺杂的石墨烯以及使用超掺杂技术制备的高氮含量石墨烯的M-H曲线[32]
Fig.1 (a) STM image of the graphite surface after treatment of Ar+ ion irradiation; (b) The dI/dV spectra measured on the pristine graphite surface and top of the single C vacancy at 6 K[31]; Copyright 2010, American Physical Society. (c) TEM image of superdoped graphene with a high level of N; (d) M-H curves of pristine graphene, N doped graphene without fluorination pretreatment and superdoped graphene measured at 2 K[32]. Copyright 2016, Springer Nature
图2 (a) 5 at% V掺杂MoS2纳米片在不同温度下的M-H曲线;(b) 5 at% V掺杂MoS2纳米片的场冷-零场冷曲线[33]; (c) 单层未掺杂的MoS2, Co掺杂的MoS2以及Co、Cr共掺杂的MoS2在300 K下的M-H曲线;(d) 单层Co、Cr共掺杂MoS2的场冷-零场冷曲线[34]
Fig.2 (a) M-H curves of 5 at% V doped MoS2 nanosheets at different temperatures; (b) FC-ZFC curves of 5 at% V doped MoS2 nanosheets[33]; Copyright 2017, American Chemical Society. (c) M-H curves of monolayer pristine MoS2, Co-MoS2 and (Co, Cr)-MoS2 measured at 300 K; (d) FC-ZFC curves of monolayer (Co, Cr)-MoS2[34]. Copyright 2019, Springer Nature
图3 (a) CrI3的晶体结构; (b) 剥离得到的CrI3纳米片的光学显微镜图像; (c) 计算得到的该纳米片的光学衬度图; (d) 不同层厚CrI3的平均光学衬度(绿色圈)按照菲涅尔公式拟合(蓝色直线); (e) 一层、两层以及三层CrI3的磁光克尔信号[8]
Fig.3 (a) The crystal structure of CrI3; (b) Optical image of the exfoliated CrI3 nanoflake; (c) The calculated optical contrast map of this exfoliated CrI3 nanoflake; (d) The average optical contrast of the CrI3 with different thickness (the green circles) fitted by Fresnel’s equations (the blue line); (e) MOKE signals of monolayer, bilayer and trilayer CrI3[8]. Copyright 2017, Springer Nature
图4 (a) 剥离得到Cr2Ge2Te6的光学显微镜图像及该区域在不同温度下的克尔转角成像; (b) 6层厚度Cr2Ge2Te6的克尔转角随磁场的变化曲线及从不同方向扫描且B=0时的克尔转角成像[9]
Fig.4 (a) Optical image of the exfoliated Cr2Ge2Te6 nanoflake and the Kerr rotation images of this area at different temperatures; (b) Hysteresis loop of the six-layer Cr2Ge2Te6 and the Kerr rotation images at zero field after varying the field from different direction[9]. Copyright 2017, Springer Nature
图5 (a) 不同厚度Fe3GeTe2的霍尔电阻随外磁场的变化关系(左侧: 低温,右侧: 100 K); (b) 不同厚度Fe3GeTe2的剩余霍尔电阻随温度的变化关系曲线; (c) 磁转变温度和Fe3GeTe2层数之间的相图; (d) 三层Fe3GeTe2的居里温度与外加电压之间的相图; (e) 在2.1 V外加电压,不同温度条件下,四层厚度Fe3GeTe2的霍尔电阻随磁场的变化关系[43]
Fig.5 (a) Hysteresis loop of the Hall resistance of Fe3GeTe2 with different thicknesses (left: at low temperature, right: at 100 K); (b) Remanent anomalous Hall resistance of Fe3GeTe2 with different thicknesses as a function of temperature; (c) The phase diagram of Fe3GeTe2 with varied thicknesses and temperatures; (d) The phase diagram of trilayer Fe3GeTe2 with varied gate voltages and temperatures; (e) Hysteresis loop of the Hall resistance of four-layer Fe3GeTe2 under different temperatures and a gate voltage of 2.1 V[43]. Copyright 2018, Springer Nature
图6 (a) 电化学剥离VSe2的装置示意图;(b)在SiO2/Si衬底上的超薄VSe2纳米片的显微镜图像;(c) 剥离得到的VSe2纳米片的厚度和尺寸的统计直方图;(d) 超薄VSe2纳米片在10 K和300 K下的M-H曲线[55]
Fig.6 (a) Schematic diagram of the electrochemical exfoliation setup for VSe2; (b) Optical images of ultrathin VSe2 nanoflakes on SiO2/Si substrate; (c) Statistical histograms for the thickness and lateral size distributions of the exfoliated ultrathin VSe2 nanoflakes; (d) the M-H curves of the ultrathin VSe2 nanoflakes at 10 K and 300 K[55]. Copyright 2019, Wiley-VCH
图7 (a) 超声辅助液相剥离法制备超薄铁磁性的α-Fe2O3纳米片示意图; (b) 超薄铁磁性α-Fe2O3纳米片在10 K和300 K下的M-H曲线; (c) 超薄铁磁性α-Fe2O3纳米片在1000 Oe磁场下的场冷-零场冷曲线[59]
Fig.7 (a) Schematic diagram of sonication-assisted liquid-phase exfoliation for ultrathin ferromagnetic α-Fe2O3 nanosheets; (b) M-H curves of the ultrathin ferromagnetic α-Fe2O3 nanosheets at 10 K and 300 K; (c) FC-ZFC curves of ultrathin ferromagnetic α-Fe2O3 nanosheets at 1000 Oe[59]. Copyright 2018, Springer Nature
图8 (a) 金属性的MTe2 (M=V, Nb, Ta)纳米片的合成制备示意图; (b) MTe2 (M=V, Nb, Ta)的原子力显微镜图像; (c) MTe2 (M=V, Nb, Ta)在10 K下的M-H曲线[10]
Fig.8 (a) Schematic diagram of the synthesis of ultrathin metallic MTe2 (M=V, Nb, Ta) nanoplates; (b) AFM images of ultrathin MTe2 (M=V, Nb, Ta) nanoplates; (c) M-H curves of the ultrathin MTe2 (M=V, Nb, Ta) nanoplates at 10 K[10]. Copyright 2018, Wiley-VCH
图9 (a) V5Se8的晶体结构示意图; (b) 30层厚度的V5Se8的截面扫描透射电子显微镜图像; (c) 平面晶格长度随生长时间的变化曲线; (d) 2 K温度下,不同层厚V5Se8的反常霍尔电阻率随外磁场的变化曲线; (e) 不同层厚V5Se8的饱和反常霍尔电阻率和剩余反常霍尔电阻率随温度的变化曲线[74]
Fig.9 (a) Crystal structure of V5Se8; (b) The cross-sectional STEM image of 30 ML thick V5Se8film; (c) The evolution of in-plane lattice length with growth time; (d) The ρAH-μ0H curves of V5Se8 with different thicknesses at 2 K; (e) The temperature dependences of the ρAH, sat and ρAH, rem of V5Se8 with different thicknesses[74]. Copyright 2019, American Chemical Society
图10 (a) 二维磁性FeOOH纳米片的液相合成示意图; (b) 超薄FeOOH纳米片的TEM图像;(c) 超薄FeOOH纳米片的原子力显微镜图像;(d) 超薄FeOOH纳米片在不同温度下的磁化曲线;(e) 超薄FeOOH纳米片的场冷-零场冷曲线[77]
Fig.10 (a) Schematic diagram of the synthesis of 2D magnetic FeOOH nanosheets; (b) TEM image of ultrathin FeOOH nanosheets; (c) AFM image of ultrathin FeOOH nanosheets; (d) Magnetization curves of the ultrathin FeOOH nanosheets at different temperatures; (e) FC-ZFC curves of ultrathin FeOOH nanosheets[77]. Copyright 2014, Royal Society of Chemistry
图11 (a) 双层CrI3在不同电场下的磁圆二色谱信号随磁场的变化关系; (b) 不同固定磁场下饱和磁化强度的绝对变化和相对变化值随外加电场的变化关系; (c)转变磁场随外加电场的变化关系; (d) 在0.44 T和-0.44 T下,磁化强度及归一化的磁化强度值随电场的变化曲线; (e) 通过周期性地改变电场强度调控饱和磁化强度值[79]
Fig.11 (a) MCD signals of bilayer CrI3 as a function of magnetic field under different electric fields; (b) The absolute and relative changes of magnetization as a function of electric field under different fixed magnetic fields; (c) The critical magnetic fields as a function of electric field; (d) The magnetization and the normalized magnetization as a function of electric field at 0.44 T and -0.44 T, respectively; (e) Repeated changing the magnetization by applying a periodic electric field at 0.44 T[79]. Copyright 2018, Springer Nature
图12 (a) 基于CrI3双栅极场效应器件示意图及其光学显微镜照片; (b) 单层CrI3在不同电压和温度下的MCD信号和外加磁场之间的关系;(c) 双层CrI3的转变磁场与外加电压之间的相图;(d) 层间交换常数和转变磁场与外加电压和掺杂浓度之间的关系[80]
Fig.12 (a) Schematic diagram of dual-gate CrI3 field-effect device and the optical images of the devices; (b) MCD signals as a function of magnetic field under different gate voltages and temperatures; (c) The phase diagram of bilayer CrI3 with varied magnetic field and gate voltages; (d) Interlayer exchange constant and critical magnetic fields as functions of gate voltages and doping concentration[80]. Copyright 2018, Springer Nature
图13 (a) 施加高压装置示意图;(b) 施加不同压力时隧穿电流与磁场的关系;(c) 双层CrI3施加压力(2.45 Gpa)前后的RMCD信号[81]
Fig.13 (a) Schematic diagram of high-pressure experimental set-up; (b) The tunneling current as a function of magnetic field under different pressures; (c) RMCD signals of bilayer CrI3 before and after pressure (2.45 Gpa) treatment[81]. Copyright 2019, Springer Nature
[1]
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M. Science, 2001,294:1488. doi: 10.1126/science.1065389

URL     pmid: 11711666
[2]
Xu J J, Li W, Hou Y. Trends in Chemistry, 2020,2:163. doi: 10.1016/j.trechm.2019.11.007
[3]
Ramasubramaniam A, Naveh D. Phys. Rev. B, 2013,87:195201.
[4]
Andriotis A N, Menon M. Phys. Rev. B, 2014,90:125304. doi: 10.1103/PhysRevB.90.125304
[5]
Blonski P, Tucek J, Sofer Z, Mazanek V, Petr M, Pumera M, Otyepka M, Zboril R. J. Am. Chem. Soc., 2017,139:3171.

URL     pmid: 28110530
[6]
Tan H, Hu W, Wang C, Ma C, Duan H L, Yan W S, Cai L, Guo P, Sun Z H, Liu Q H, Zheng X S, Hu F C, Wei S Q. Small, 2017,13:1701389.
[7]
Mermin N D, Wagner H. Phys. Rev. Lett., 1966,17:1133.
[8]
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D. Nature, 2017,546:270.

URL     pmid: 28593970
[9]
Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X. Nature, 2017,546:265. doi: 10.1038/nature22060

URL     pmid: 28445468
[10]
Li J, Zhao B, Chen P, Wu R X, Li B, Xia Q L, Guo G H, Luo J, Zang K T, Zhang Z W, Ma H F, Sun G Z, Duan X D, Duan X F. Adv. Mater., 2018,30:1801043.
[11]
O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K. Nano Lett., 2018,18:3125.

URL     pmid: 29608316
[12]
Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J. Adv. Mater., 2019,31:1900056.
[13]
Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernandez-Rossier J, Jarillo-Herrero P. Science, 2018,360:1218.

URL     pmid: 29724904
[14]
Li X L, Lu J T, Zhang J, You L, Su Y R, Tsymbal E Y. Nano Lett., 2019,19:5133.

URL     pmid: 31276417
[15]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004,306:666.

URL     pmid: 15499015
[16]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J. Nat. Nanotechnol., 2010,5:722.
[17]
Zhu Z Y, Cheng Y C, Schwingenschloegl U. Phys. Rev. B, 2011,84:153402.
[18]
Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R T, Lopez-Urias F, Crespi V H, Terrones H, Terrones M. Nano Lett., 2013,13:3447. doi: 10.1021/nl3026357

URL     pmid: 23194096
[19]
Radisavljevic B, Kis A. Nat. Mater., 2013,12:815.
[20]
Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F. Nat. Nanotechnol., 2014,9:682. doi: 10.1038/nnano.2014.167

URL     pmid: 25150718
[21]
Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X D. Nat. Nanotechnol., 2014,9:268.
[22]
Tan C L, Zhang H. Chem. Soc. Rev., 2015,44:2713.

URL     pmid: 25292209
[23]
Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Nat. Nanotechnol., 2014,9:372.

URL     pmid: 24584274
[24]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S, Nat. Nanotechnol., 2012,7:699.
[25]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nat. Chem., 2013,5:263.

URL     pmid: 23511414
[26]
Zhang C Z, Mahmood N, Yin H, Liu F, Hou Y. Adv. Mater., 2013,25:4932.

URL     pmid: 23864555
[27]
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013,135:17881.

URL     pmid: 24191645
[28]
Ali Z, Zhang T, Asif M, Zhao L N, Yu Y, Hou Y. Mater. Today, 2020,35:131.
[29]
Mahmood N, Zhang C Z, Yin H, Hou Y. J. Mater. Chem. A, 2014,2:15.
[30]
Palacios J J, Fernandez-Rossier J, Brey L. Phys. Rev. B, 2008,77:195428.
[31]
Ugeda M M, Brihuega I, Guinea F, Gomez-Rodriguez J M. Phys. Rev. Lett., 2010,104:096804.

URL     pmid: 20367003
[32]
Liu Y, Shen Y T, Sun L T, Li J C, Liu C, Ren W C, Li F, Gao L B, Chen J, Liu F C, Sun Y Y, Tang N J, Cheng H M, Du Y W. Nat. Commun., 2016,7:10921.

URL     pmid: 26941178
[33]
Ahmed S, Ding X, Bao N L, Bian P J, Zheng R K, Wang Y R, Murmu P P, Kennedy J V, Liu R, Fan H M, Suzuki K, Ding J, Yi J B, Chem. Mater., 2017,29:9066.
[34]
Duan H L, Guo P, Wang C, Tan H, Hu W, Yan W S, Ma C, Cai L, Song L, Zhang W H, Sun Z H, Wang L J, Zhao W B, Yin Y W, Li X G, Wei S Q. Nat. Commun., 2019,10:1584.

URL     pmid: 30952850
[35]
Li W, Huang J Q, Han B, Xie C Y, Huang X X, Tian K S, Zeng Y, Zhao Z J, Gao P, Zhang Y F, Yang T, Zhang Z D, Sun S N, Hou Y. Adv.Sci., 2020, DOI: 10.1002/advs.202001080.
[36]
Wang Z Y, Tang C, Sachs R, Barlas Y, Shi J. Phys. Rev. Lett., 2015,114:016603. doi: 10.1103/PhysRevLett.114.016603

URL     pmid: 25615490
[37]
Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J, Chen C T, Nat. Mater., 2016,15:711. doi: 10.1038/nmat4603

URL     pmid: 27019382
[38]
Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H. Nat. Nanotechnol., 2017,12:757.

URL     pmid: 28459469
[39]
McGuire M A, Dixit H, Cooper V R, Sales B C. Chem. Mater., 2015,27:612.
[40]
Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K. Eur. J. Inorg. Chem., 2006,8:1561.
[41]
Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K, Fang M H. J. Phys. Soc. Jpn., 2013,82:124711.
[42]
Zhuang H L, Kent P R C, Hennig R G. Phys. Rev. B, 2016,93:134407.
[43]
Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B. Nature, 2018,563:94.

URL     pmid: 30349002
[44]
Lee C, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Science, 2010,328:76.

URL     pmid: 20360104
[45]
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Nat. Nanotechnol., 2013,8:497.

URL     pmid: 23748194
[46]
Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J, Castellanos-Gomez A. Nano Lett., 2014,14:3347.

URL     pmid: 24821381
[47]
Li H, Wu J, Yin Z Y, Zhang H. Acc. Chem. Res., 2014,47:1067.

URL     pmid: 24697842
[48]
Zeng Z Y, Sun T, Zhu J X, Huang X, Yin Z Y, Lu G, Fan Z X, Yan Q Y, Hng H H, Zhang H. Angew. Chem. Int. Edit., 2012,51:9052.
[49]
Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Angew. Chem. Int. Edit., 2011,50:11093.
[50]
Zheng J, Zhang H, Dong S H, Liu Y P, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P. Nat. Commun., 2014,5:2995.

URL     pmid: 24384979
[51]
Dines M B. Mater. Res. Bull., 1975,10:287.
[52]
Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, Huang B B. ACS Nano, 2012,6:1695.

URL     pmid: 22264067
[53]
Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Manh-Huong P, Batzill M. Nat. Nanotechnol., 2018,13:289.

URL     pmid: 29459653
[54]
Wong P K J, Zhang W, Bussolotti F, Yin X M, Herng T S, Zhang L, Huang Y L, Vinai G, Krishnamurthi S, Bukhvalov D W, Zheng Y J, Chua R, N'Diaye A T, Morton S A, Yang C Y, Yang K H O, Torelli P, Chen W, Goh K E J, Ding J, Lin M T, Brocks G, de Jong M P, Neto A H C, Wee A T S. Adv. Mater., 2019,31:1901185.
[55]
Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z J, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P, Adv. Mater., 2019,31:1903779.
[56]
Ciesielski A, Samori P. Chem. Soc. Rev., 2014,43:381.

URL     pmid: 24002478
[57]
Qian W, Hao R, Hou Y, Tian Y, Shen C M, Gao H J, Liang X L, Nano Res., 2009,2:706.
[58]
Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013,340:1420.
[59]
Balan A P, Radhakrishnan S, Woellner C F, Sinha S K, Deng L Z, de los Reyes C, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Marti A A, van Aken P A, Varghese O K, Tiwary C S, Iyer A M M R, Ajayan P M. Nat. Nanotechnol., 2018,13:602.

URL     pmid: 29736036
[60]
Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009,324:1312.

URL     pmid: 19423775
[61]
Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2009,9:30.

URL     pmid: 19046078
[62]
Kim K K, Hsu A, Jia X T, Kim S M, Shi Y M, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T, Kong J. Nano Lett., 2012,12:161.

URL     pmid: 22111957
[63]
Lee K H, Shin H J, Lee J, Lee I, Kim G H, Choi J Y, Kim S W. Nano Lett., 2012,12:714.

URL     pmid: 22220633
[64]
Yang P F, Zou X L, Zhang Z P, Hong M, Shi J P, Chen S L, Shu J P, Zhao L Y, Jiang S L, Zhou X B, Huan Y H, Xie C Y, Gao P, Chen Q, Zhang Q, Liu Z F, Zhang Y F, Nat. Commun., 2018,9:979.

URL     pmid: 29515118
[65]
Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z. Nature, 2018,556:355.

URL     pmid: 29670263
[66]
Wang X L, Gong Y J, Shi G, Chow W L, Keyshar K, Ye G L, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M. ACS Nano, 2014,8:5125. doi: 10.1021/nn501175k

URL     pmid: 24680389
[67]
Shi Y M, Li H N, Li L J. Chem. Soc. Rev., 2015,44:2744.

URL     pmid: 25327436
[68]
Liu B L, Fathi M, Chen L, Abbas A, Ma Y Q, Zhou C W. ACS Nano, 2015,9:6119.

URL     pmid: 26000899
[69]
Wang Z G, Li Q, Besenbacher F, Dong M D. Adv. Mater., 2016,28:10224.

URL     pmid: 27714880
[70]
Vatansever E, Sarikurt S, Evans R F L. Mater. Res. Express, 2018,5:046108.
[71]
Guo H Y, Lu N, Wang L, Wu X J, Zeng X C. J. Phys. Chem. C, 2014,118:7242.
[72]
Wang Y, Sofer Z, Luxa J, Pumera M. Adv. Mater. Interfaces, 2016,3:1600433.
[73]
Fuh H R, Chang C R, Wang Y K, Evans R F L, Chantrell R W, Jeng H T. Sci. Rep., 2016,6. doi: 10.1038/s41598-016-0002-7

URL     pmid: 28442706
[74]
Nakano M, Wang Y, Yoshida S, Matsuoka H, Majima Y, Ikeda K, Hirata Y, Takeda Y, Wadati H, Kohama Y, Ohigashi Y, Sakano M, Ishizaka K, Iwasa Y. Nano Lett., 2019,19:8806.
[75]
Dong B, Ju Y M, Huang X X, Li W, Ali Z, Yin H, Sheng F G, Hou Y. Nanoscale, 2019,11:5141. doi: 10.1039/c8nr09492f

URL     pmid: 30620018
[76]
Zhang X D, Zhang J J, Zhao J Y, Pan B C, Kong M G, Chen J, Xie Y. J. Am. Chem. Soc., 2012,134:11908.

URL     pmid: 22779763
[77]
Chen P Z, Xu K, Li X L, Guo Y Q, Zhou D, Zhao J Y, Wu X J, Wu C Z, Xie Y. Chem. Sci., 2014,5:2251.
[78]
Yang H, Wang F, Zhang H S, Guo L H, Hu L Y, Wang L F, Xue D J, Xu X H. J. Am. Chem. Soc., 2020,142:4438. doi: 10.1021/jacs.9b13492

URL     pmid: 31976663
[79]
Jiang S W, Shan J, Mak K F. Nat. Mater., 2018,17:406. doi: 10.1038/s41563-018-0040-6

URL     pmid: 29531370
[80]
Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J. Nat. Nanotechnol., 2018,13:549.

URL     pmid: 29736035
[81]
Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D. Nat. Mater., 2019,18:1298.

URL     pmid: 31659293
[82]
Dolui K, Petrovic M D, Zollner K, Plechac P, Fabian J, Nikolic B K. Nano Lett., 2020,20:2288.

URL     pmid: 32130017
[83]
León A M, González J W, Mejía-López J, Lima C F, Morell E S. 2D Mater., 2020,7:035008.
[1] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[2] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[3] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[4] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[5] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[6] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[7] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[8] 刘璇宇, 朱晓婷, 丁帅帅, 李荣金, 胡文平. 有机自旋阀及其磁电阻效应[J]. 化学进展, 2019, 31(9): 1199-1212.
[9] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[10] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[11] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[12] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[13] 姚温浩, 于飞, 马杰. 海藻酸盐复合凝胶吸附材料的合成及其在水处理中的应用[J]. 化学进展, 2018, 30(11): 1722-1733.
[14] 何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧. 各向异性水凝胶的制备方法及性质研究[J]. 化学进展, 2017, 29(6): 649-658.
[15] 赵凤阳, 秘一芳, 安全福, 高从堦. 荷正电聚乙烯亚胺纳滤膜的制备与应用[J]. 化学进展, 2016, 28(4): 541-551.
阅读次数
全文


摘要