English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1557-1563 DOI: 10.7536/PC200207 前一篇   后一篇

• 综述 •

革兰氏阳性电活性菌的电子传递及其应用

陈立香1,2, 李祎頔1,2, 田晓春1, 赵峰1,**()   

  1. 1.中国科学院城市环境研究所 中国科学院城市污染物转化重点实验室 厦门 361021
    2.中国科学院大学 北京 100049
  • 收稿日期:2020-02-14 修回日期:2020-04-21 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 赵峰
  • 基金资助:
    国家自然科学基金项目(21777155); 国家自然科学基金项目(21802133); 福建物质结构研究所-城市环境研究所融合发展基金项目资助(RHZX-2018-006)

Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application

Lixiang Chen1,2, Yidi Li1,2, Xiaochun Tian1, Feng Zhao1,**()   

  1. 1. CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-02-14 Revised:2020-04-21 Online:2020-10-24 Published:2020-09-02
  • Contact: Feng Zhao
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21777155); National Natural Science Foundation of China(21802133); FJIRSM&IUE Joint Research Fund(RHZX-2018-006)

电活性菌将电子从胞内转移至胞外电子受体或者将胞外电子转移至胞内的过程为胞外电子传递,其在微生物群落间的电子传递及元素的地球化学循环过程中发挥重要作用。电活性菌的胞外电子传递研究前期主要集中于革兰氏阴性菌,由于革兰氏阳性菌与革兰氏阴性菌的膜结构/厚度明显不同,因此二者的电子跨膜传递途径差异明显。革兰氏阳性菌因分布广泛且可在高温、低pH、高pH和高盐等环境中生存,其电活性和电子传递机制也逐渐引起关注。本文归纳总结了革兰氏阳性电活性菌的电子传递类型,基于厚壁菌门、放线菌门和绿弯菌门的分类阐述胞外电子传递的研究进展,分析了革兰氏阳性电活性菌在污染物降解、生物能源和工业制品合成等方面的应用,并展望了未来的发展方向。

Microbial extracellular electron transfer (EET) is the process that electroactive microorganisms transfer electrons to an extracellular electron acceptor or receive electrons from the environment. EET is essential for interspecies electron transfer and also contributive to the biogeochemical cycling of elements and biotechnological applications in environments. Up till now, research on EET has been concentrated on Gram-negative electroactive bacteria, however, the EET pathway of Gram-positive electroactive bacteria remains limited. As the membrane structure between Gram-positive bacteria and Gram-negative bacteria are significantly different, the types of redox proteins and electron shuttles involved in the transmembrane transfer may be different. Gram-positive bacteria are widely distributed among environment and they can proceed EET in harsh condition e.g. high temperature, low pH, high pH and high salinity, therefore their electroactivity and EET have attracted great attention. In this review, we summarize the types of Gram-positive electroactive bacteria EET pathway, which include direct electron transfer and mediated electron transfer, the same as Gram-negative bacteria, but Gram-positive bacteria have much more diversities on redox proteins and electron shuttles. We elaborate recent development of EET pathways of Firmicutes, Actinobacteria and Chloroflexi, describe the applications in the degradation of pollutants, bio-electricity generation and biofuel production, then propose possible research directions in the future.

Contents

1 Introduction

2 Extracellular electron transfer of Gram-positive electroactive bacteria

2.1 The extracellular electron transfer of Bacilli in Firmicutes

2.2 The extracellular electron transfer of Clostridia in Firmicutes

2.3 The extracellular electron transfer in Actinobacteria and Chloroflexi

3 Applications of Gram-positive electroactive bacteria

3.1 Organic pollutant removal

3.2 Bioenergy

3.3 Bioproduction

4 Conclusion and outlook

()
图1 电活性菌胞外电子传递机制示意图
Fig.1 Schematic image of extracellular electron transfer mechanisms for electroactive bacteria
图2 革兰氏阳性电活性菌进化树
Fig.2 Cladogram of gram-positive electroactive bacteria
图3 革兰氏阳性电活性菌的(a)直接电子传递和(b)间接电子传递示意图
Fig.3 Schematic images of the (a) direct and (b) mediated electron transfer mechanism of gram-positive electroactive bacteria
[1]
Xiong Y, Shi L, Chen B, Mayer M U, Lower B H, Londer Y, Bose S, Hochella M F, Fredrickson J K, Squier T C. J. Am. Chem. Soc., 2006,128:13978.
[2]
Carlson H K, Iavarone A T, Gorur A, Yeo B S, Tran R, Melnyk R A, Mathies R A, Auer M, Coates J D. Proc. l. Acad. Sci. U. S. A., 2012,109:1702.
[3]
Light S H, Su L, Rivera-Lugo R, Cornejo J A, Louie A, Iavarone A T, Ajo-Franklin C M, Portnoy D A. Nature, 2018,562:140.

URL     pmid: 30209391
[4]
Holmes D E, Mester T, O'NeilR A, Perpetua L A, Larrahondo M J, Glaven R, Sharma M L, Ward J E, Nevin K P, Lovley D R. Microbiology, 2008,154:1422. doi: 10.1099/mic.0.2007/014365-0

URL     pmid: 18451051
[5]
Pirbadian S, Barchinger S E, Leung K M, Byun H S, Jangir Y, Bouhenni R A, Reed S B, Romine M F, Saffarini D A, Shi L, Gorby Y A, Golbeck J H, El-Naggar M Y. Proc. Natl. Acad. Sci. U. S. A., 2014,111:12883.

URL     pmid: 25143589
[6]
Pirbadian S, El-Naggar M Y. Phys. Chem. Chem. Phys., 2012,14:13802.
[7]
Okamoto A, Saito K, Inoue K, Nealson K H, Hashimoto K, Nakamura R. Energy Environ. Sci., 2014,7:1357.
[8]
Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. l. Acad. Sci. U. S. A., 2008,105:3968.
[9]
Wang Y, Kern S E, Newman D K. J. Bacteriol., 2010,192:365.

URL     pmid: 19880596
[10]
Freguia S, Masuda M, Tsujimura S, Kano K. Bioelectrochemistry, 2009,76:14.

URL     pmid: 19411192
[11]
Li F, Li Y X, Cao Y X, Wang L, Liu C G, Shi L, Song H. Nat. Commun., 2018,9:3637.

URL     pmid: 30194293
[12]
Watanabe H C, Yamashita Y, Ishikita H. Proc. l. Acad. Sci. U. S. A., 2017,114:2916.
[13]
Levar C E, Hoffman C L, Dunshee A J, Toner B M, Bond D R. ISME. J, 2017,11:741.

URL     pmid: 28045456
[14]
Steidl R J, Lampa-Pastirk S, Reguera G. Nat. Commun., 2016,7:12217.

URL     pmid: 27481214
[15]
Wu L C, Tsai T H, Liu M H, Kuo J L, Chang Y C, Chung Y C. Sensors, 2017,17:2461.
[16]
Liu M, Yuan Y, Zhang L X, Zhuang L, Zhou S G, Ni J R. Bioresour. Technol, 2010,101:1807.
[17]
肖勇(Xiao Y), 吴.松(WuS)., 杨朝晖(YangZ H), 郑越(ZhengY), 赵峰(Zhao F). 化学进展 (Progress in Chemistry), 2013,25:1771.
[18]
Refojo P N, Sena F V, Calisto F, Sousa F M, Pereira M M. Advances in Microbial Physiology. NY: Zoe Kruze, 2019. 331
[19]
Modestra J A, Mohan S V. RSC Adv, 2014,4:34045.
[20]
Light S H, Meheust R, Ferrell J L, Cho J, Deng D, Agostoni M, Iavarone A T, Banfield J F, D'Orazio S E F, Portnoy D A. Proc. Natl. Acad. Sci. U. S. A., 2019,116:26892.
[21]
Chen L X, Cao C L, Wang S H, Varcoe J R, Slade R C T, Avignone-Rossa C, Zhao F. iScience, 2019,12:260. doi: 10.1016/j.isci.2019.01.020

URL     pmid: 30711749
[22]
You L X, Liu L D, Xiao Y, Dai Y F, Chen B L, Jiang Y X, Zhao F. Bioelectrochemistry, 2018,119:196.

URL     pmid: 29055859
[23]
Wu S, Xiao Y, Wang L, Zheng Y, Chang K, Zheng Z, Yang Z, Varcoe J R, Zhao F. Electrochim. Acta, 2014,146:564.
[24]
Gurumurthy D M, Bharagava R N, Kumar A, Singh B, Ashfaq M, Saratale G D, Mulla S I. Microbiol. Res, 2019,229:126324. doi: 10.1016/j.micres.2019.126324

URL     pmid: 31491671
[25]
Tian T, Fan X Y, Feng M, Su L, Zhang W, Chi H M, Fu D G. RSC Adv, 2019,9:40903.
[26]
Pankratova G, Leech D, Gorton L, Hederstedt L. Biochemistry, 2018,57:4597.

URL     pmid: 29989403
[27]
Keogh D, Lam L N, Doyle L E, Matysik A, Pavagadhi S, Umashankar S, Low P M, Dale J L, Song Y, Ng S P, Boothroyd C B, Dunny G M, Swarup S, Williams R B H, Marsili E, Kline K A. mBio, 2018,9:e00626.

URL     pmid: 29636430
[28]
Hederstedt L, Gorton L, Pankratova G. J. Bacteriol., 2020,202:e00725-19.

URL     pmid: 31932308
[29]
Naradasu D, Miran W, Sakamoto M, Okamoto A. Front. Microbiol., 2019,9:3267. doi: 10.3389/fmicb.2018.03267

URL     pmid: 30697198
[30]
Marshall C W, May H D. Energy Environ. Sci., 2009,2:699.
[31]
Costa N L, Hermann B, Fourmond V, Faustino M M, Teixeira M, Einsle O, Paquete C M, Louro R O. mBio, 2019,10:e01210.
[32]
Junier P, Junier T, Podell S, Sims D R, Detter J C, Lykidis A, Han C S, Wigginton N S, Gaasterland T, Bernier-Latmani R. Environ. Microbiol., 2010,12:2738.

URL     pmid: 20482743
[33]
郭军辉(Guo J H). 上海海洋大学硕士毕业论文 (Master Dissertation of Shanghai Ocean University), 2016.
[34]
Kruse T, van de Pas B A, Atteia A, Krab K, Hagen W R, Goodwin L, Chain P, Boeren S, Maphosa F, Schraa G, de Vos W M, van der Oost J, Smidt H, Stams A J M. J. Bacteriol., 2015,197:893. doi: 10.1128/JB.02370-14

URL     pmid: 25512312
[35]
Hess V, Schuchmann K, Müller V. J. Biol. Chem., 2013,288:31496.

URL     pmid: 24045950
[36]
Park H S, Kim B H, Kim H S, Kim H J, Kim G T, Kim M, Chang I S, Park Y K, Chang H I. Anaerobe, 2001,7:297.
[37]
Schwab L, Rago L, Koch C, Harnisch F. Bioelectrochemistry, 2019,130:107334.

URL     pmid: 31352302
[38]
Khan M T, Duncan S H, Stams A J M, van Dijl J M, Flint H J, Harmsen H J M. The ISME. J., 2012,6:1578.

URL     pmid: 22357539
[39]
Gavrilov S N, Lloyd J R, Kostrikina N A, Slobodkin A I. Geomicrobiol. J, 2012,29:804.
[40]
Li X, Zeng X, Qiu D, Zhang Z, Zhang X, Shao Z. Sci. Total Environ, 2020,722:137723.
[41]
Bott M, Niebisch A. J. Biotechnol., 2003,104:129.
[42]
Cournet A, Délia M L, Bergel A, Roques C, Bergé M. Electrochem. Commun., 2010,12:505.
[43]
Khawdas W, Watanabe K, Karatani H, Aso Y, Tanaka T, Ohara H. J. Biosci. Bioeng., 2019,128:593.

URL     pmid: 31147220
[44]
Kawaichi S, Yamada T, Umezawa A, McGlynn S E, Suzuki T, Dohmae N, Yoshida T, Sako Y, Matsushita N, Hashimoto K, Nakamura R. Front. Microbiol., 2018,9:68
[45]
Liu X, Li Z, Zhang C, Tan X, Yang X, Wan C, Lee D J. Bioresour. Technol, 2020,295:122305. doi: 10.1016/j.biortech.2019.122305

URL     pmid: 31675520
[46]
Hassan H, Jin B, Dai S, Ma T, Saint C. Chem. Eng. J, 2016,301:103.
[47]
Deng H, Xue H, Zhong W. Electroanalysis, 2017,29:1294.
[48]
Junier P, Frutschi M, Wigginton N S, Schofield E J, Bargar J R, Bernier-Latmani R. Environ. Microbiol., 2009,11:3007.

URL     pmid: 19601961
[49]
Chen G, Bai Y, Zeng R J, Qin L. Geochim. Cosmochim. Acta, 2019,256:135.
[50]
Nimje V R, Chen C Y, Chen C C, Jean J S, Reddy A S, Fan C W, Pan K Y, Liu H T, Chen J L. J. Power Sources, 2009,190:258.
[51]
Samsudeen N, Radhakrishnan T K, Matheswaran M. Process Biochem., 2016,51:1876.
[52]
Islam M A, Ethiraj B, Cheng C K, Yousuf A, Khan M M R. Energy Fuels, 2017,31:6132.
[53]
Choi O, Kim T, Woo H M, Um Y. Sci. Rep, 2014,4:6961.

URL     pmid: 25376371
[54]
Tremblay P L, Zhang T, Dar S A, Leang C, Lovley D R. mBio, 2013,4:e00406.

URL     pmid: 23269825
[55]
Hashsham S A, Freedman D L. Appl. Environ. Microbiol, 1999,65:4537.

URL     pmid: 10508086
[56]
Liu T, Yu Y Y, Chen T, Chen W N. Biotechnol. Bioeng, 2017,114:526. doi: 10.1002/bit.26094

URL     pmid: 27596754
[57]
Pham T H, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Höfte M, Verstraete W, Rabaey K. Appl. Microbiol. Biotechnol, 2008,77:1119.

URL     pmid: 17968538
[58]
Nicolas-Alonso L F, Gomez-Gil J. Sensors, 2012,12:1211.

URL     pmid: 22438708
[1] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[2] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[3] 田晓春, 吴雪娥, 赵峰, 姜艳霞, 孙世刚. 电化学联用技术研究微生物的胞外电子传递机制[J]. 化学进展, 2018, 30(8): 1222-1227.
[4] 杨世迎, 张艺萱, 郑迪, 辛佳. 零价铝在水介质中的表面作用机制[J]. 化学进展, 2017, 29(8): 879-891.
[5] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12): 1833-1840.
[6] 刘利丹, 肖勇, 吴义诚, 陈必链, 赵峰. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11): 1859-1866.
[7] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
[8] 许杰龙, 周顺桂, 袁勇, 王跃强, 庄莉*. 有“生命”的电线:浅析微生物纳米导线电子传递机制及其应用[J]. 化学进展, 2012, (9): 1794-1800.
[9] 杨波,余刚,张祖麟. 电化学方法用于氯代芳烃污染物去除的研究*[J]. 化学进展, 2006, 18(01): 87-92.