English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 581-593 DOI: 10.7536/PC190913 前一篇   后一篇

• 综述 •

数字PCR技术的发展及应用

李慧调1, 潘建章1,**(), 方群1,**()   

  1. 浙江大学化学系 微分析系统研究所 杭州 310058
  • 收稿日期:2019-09-09 修回日期:2019-12-06 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 潘建章, 方群
  • 基金资助:
    国家自然科学基金项目(21974122); 国家自然科学基金项目(21827806); 国家自然科学基金项目(21435004)

Development and Application of Digital PCR Technology

Huitiao Li1, Jianzhang Pan1,**(), Qun Fang1,**()   

  1. Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
  • Received:2019-09-09 Revised:2019-12-06 Online:2020-05-15 Published:2020-02-20
  • Contact: Jianzhang Pan, Qun Fang
  • About author:
    ** e-mail: (Qun Fang);
    (Jianzhang Pan)
  • Supported by:
    National Natural Science Foundation of China(21974122); National Natural Science Foundation of China(21827806); National Natural Science Foundation of China(21435004)

数字PCR(Digital PCR, dPCR)是继实时荧光定量PCR(Real-time quantitative PCR, qPCR)之后发展的高灵敏核酸绝对定量分析技术,通过把反应体系均分到大量独立的微反应单元中进行PCR扩增,并根据泊松分布和阳性比例来计算核酸拷贝数实现定量分析。与传统PCR技术相比,数字PCR 技术不依赖于标准曲线,具有更高灵敏度、准确度及高耐受性,可实现对样品的绝对定量分析。近年来,随着微流控技术日臻成熟,基于微流控技术的数字PCR技术得到了快速的发展,在基因突变检测、拷贝数变异检测、病毒微生物检测、转基因食品检测以及测序等方面均得到广泛的应用。本文对数字PCR的原理、技术发展和应用进行了概述。

Digital PCR(dPCR) assay is a highly sensitive absolute quantitative analysis technique for nucleic acids. Digital PCR systems perform amplification by equally dividing the reaction mixtures into a large number of independent reaction units, and calculates the nucleic acid copy number based on the Poisson distribution and the positive ratio. With the advantages of high sensitivity, accuracy and tolerance, digital PCR assay enables absolute quantitative analysis of samples. In recent years, with the maturity of microfluidic technology, digital PCR assay based on microfluidic technology has been rapidly developed, and widely applied in the analysis of gene mutation, copy number variation, viral microbial, genetically modified foods and DNA sequencing. In this article, the principle, development and applications of the digital PCR technique are reviewed.

Contents

1 Introduction

2 Principle of dPCR technology

3 Development and classification of dPCR technology

3.1 Microchamber-based digital PCR assay

3.2 Microfluidic chip-based digital PCR assay

3.3 Droplet-based digital PCR assay

4 Applications of dPCR technology

4.1 Single cell genetic analysis

4.2 Tumour research

4.3 Prenatal diagnosis

4.4 Virus and microbial analysis

4.5 Food safety and environmental monitoring

4.6 Next generation sequencing validation and gene editing

5 Conclusion and outlook

()
图1 数字PCR分析原理[8]
Fig. 1 The principle of Digital PCR assay[8]
图2 Web of Science数据库统计1999~2018年间数字PCR 论文发表情况
Fig. 2 Numbers of published articles in the field of digital PCR from 1999 to 2018 in Web of Science
图3 基于通孔阵列的数字PCR芯片 (a)不锈钢数字PCR芯片[14];(b)QuantstudioTM 3D数字PCR芯片[15];(c)ClarityTM数字PCR芯片[16];(d)Constellation数字PCR芯片[17]
Fig. 3 Microhole array-based digital PCR chip (a) stainless steel digital PCR chip[14];(b) QuantstudioTM 3D digital PCR chip[15];(c) ClarityTM digital PCR chip[16];(d) Constellation digital PCR chip[17]
图4 (a)具有PDMS微阀结构的数字PCR芯片及核酸扩增结果[19];(b)具有飞升级体积微反应室的数字PCR芯片[20]
Fig. 4 (a) Digital PCR chip with PDMS microvalve structure and nucleic acid amplification results[19];(b)digital PCR chip with femtoliter microreaction chamber[20]
图5 (a)具有百万个皮升级微反应室的数字PCR芯片[21];(b)自分散数字PCR芯片[23];(c)自吸分液式数字PCR芯片[24];(d)PET旋转圆盘数字PCR芯片[25]
Fig. 5 (a)Digital PCR chip with millions of picoliters microreaction chambers[21];(b)self-digitization digital PCR chip[23];(c)self-priming compartmentalization digital PCR chip[24];(d)PET spinning disk digital PCR chip[25]
图6 BEAMing技术原理示意图[28]
Fig. 6 Schematic diagram of BEAMing technique[28]
图7 集成液滴生成、液滴重注入、电致液滴融合和在线荧光检测的微流控芯片数字PCR分析系统[33,34]
Fig. 7 Digital PCR analysis system integrated droplet formation, droplet reinjection, electron droplet fusion, and online fluorescence detection[33, 34]
图8 集成液滴生成、分裂、排布、热循环和荧光检测等过程的数字PCR系统[36]:(a) 芯片加工示意图;(b) 芯片结构图
Fig. 8 Digital PCR system integrating process of droplet formation, splitting, arraying, thermal cycling and fluorescence detection[36].(a) Schematic diagram of chip fabrication;(b) diagram of chip structure
图9 基于阶梯乳化的集成液滴数字PCR系统[38]
Fig. 9 Integrated droplet digital PCR system based on step emulsification[38]
图10 基于毛细管的数字PCR系统[39, 40]
Fig. 10 Capillary-based digital PCR systems[39, 40]
图11 (a)基于琼脂糖液滴和引物微球的数字PCR系统[41];(b)基于琼脂糖液滴的数字PCR系统[42]
Fig. 11 (a) Digital PCR system based on agarose droplets and primer microspheres[41];(b) digital PCR system based on agarose droplets[42]
图12 (a)基于毛细管的集成液滴数字PCR系统[43];(b)基于喷墨打印技术的在线检测的数字PCR系统[44]
Fig. 12 (a) Capillary-based integrated droplet digital PCR system[43];(b) inkjet printing-based integrated online digital PCR system[44]
图13 (a)基于表面辅助形成二维液滴阵列的数字PCR系统[45];(b)基于微孔阵列形成液滴的数字PCR系统[46]
Fig. 13 (a) Digital PCR system based on surface assisted formation of two-dimensional droplets[45];(b) digital PCR system using microwell arrays for droplet formation[46]
图14 基于滑动芯片的数字PCR系统 (a)滑动芯片操作示意图[47];(b)用于多体积数字PCR分析的滑动芯片[49]
Fig. 14 Digital PCR system based on a SlipChip. (a) The operation schematic of Slipchip[47];(b) Slipchip for multi-volume digital PCRassay[49]
表1 部分商品化数字PCR仪器性能对比[51]
Table 1 Performance comparison of some commercial digital PCR instruments[51]
[1]
Saiki R K, Scharf S, Faloona F, Mullis K B, Horn G T, Erlich H A, Arnheim N. Science, 1985,230(4732):1350. https://www.sciencemag.org/lookup/doi/10.1126/science.2999980

doi: 10.1126/science.2999980     URL    
[2]
Saiki R K, Gelfand D H, Stoffel S, Scharf S J, Higuchi R, Horn G T, Mullis K B, Erlich H A. Science, 1988,239(4839):487. https://www.sciencemag.org/lookup/doi/10.1126/science.239.4839.487

doi: 10.1126/science.239.4839.487     URL    
[3]
Mullis K B. Sci. Am., 1990,262(4):56. http://www.nature.com/doifinder/10.1038/scientificamerican0490-56

doi: 10.1038/scientificamerican0490-56     URL    
[4]
Higuchi R, Fockler C, Dollinger G, Watson R. Bio-Technology, 1993,11(9):1026.
[5]
Sykes P J, Neoh S H, Brisco M J, Hughes E, Condon J, Morley A A. Biotechiques, 1992,13(3):444.
[6]
Vogelstein B, Kinzler K W. Proc. Natl. Acad. Sci. U.S. A., 1999,96(16):9236. http://www.pnas.org/cgi/doi/10.1073/pnas.96.16.9236

doi: 10.1073/pnas.96.16.9236     URL    
[7]
Pohl G, Shih L M. Expert Rev. Mol. Diagn., 2004,4(1):41. http://www.tandfonline.com/doi/full/10.1586/14737159.4.1.41

doi: 10.1586/14737159.4.1.41     URL    
[8]
Baker M. Nat. Methods, 2012,9(6):541. http://dx.doi.org/10.1038/nmeth.2027

doi: 10.1038/nmeth.2027     URL    
[9]
刘雯雯(Liu W W). 浙江大学博士论文( Doctoral Dissertation of Zhejiang University of Science and Technology), 2017.
[10]
林彩琴(Lin C Q), 姚波(Yao B). 化学进展 (Progress in Chemistry), 2012, ( 12):2415. http://www.progchem.ac.cn//CN/abstract/abstract10997.shtml
[11]
Whale A S, Huggett J F, Cowen S, Speirs V, Shaw J, Ellison S, Foy C A, Scott D J. Nucleic Acids Res., 2012,40(11):e82. https://academic.oup.com/nar/article/40/11/e82/2409772

doi: 10.1093/nar/gks203     URL    
[12]
Hindson C M, Chevillet J R, Briggs H A, Gallichotte E N, Ruf I K, Hindson B J, Vessella R L, Tewari M. Nat. Methods, 2013,10(10):1003. http://dx.doi.org/10.1038/nmeth.2633

doi: 10.1038/nmeth.2633     URL    
[13]
Stephens J C, Rogers J, Ruano G. Am. J. Hum. Genet., 1990,46(6):1149.
[14]
Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D, Cho J, Kanigan T, Ilyin S E, Horowitz D, Dixon J M, Brenan C J H. Nucleic Acids Res., 2006,34(18):e123. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkl639

doi: 10.1093/nar/gkl639     URL    
[15]
Kinz E, Leiherer A, Lang A H, Drexel H, Muendlein A. Int. J. Lab. Hematol., 2015,37(2):217. http://doi.wiley.com/10.1111/ijlh.2015.37.issue-2

doi: 10.1111/ijlh.2015.37.issue-2     URL    
[16]
Low H Y, Chan S J, Soo G H, Ling B, Tan E L. Anal. Bioanal. Chem., 2017,409(7):1869. http://link.springer.com/10.1007/s00216-016-0131-7

doi: 10.1007/s00216-016-0131-7     URL    
[17]
Rutsaert S, Bosman K, Trypsteen W, Nijhuis M, Vandekerckhove L. Retrovirology, 2018,15(1):16. https://doi.org/10.1186/s12977-018-0399-0

doi: 10.1186/s12977-018-0399-0     URL    
[18]
Unger M A, Chou H P, Thorsen T, Scherer A, Quake S R. Science, 2000,288(5463):113. https://www.sciencemag.org/lookup/doi/10.1126/science.288.5463.113

doi: 10.1126/science.288.5463.113     URL    
[19]
Ottesen E A, Hong J W, Quake S R, Leadbetter J R. Science, 2006,314(5804):1464. https://www.sciencemag.org/lookup/doi/10.1126/science.1131370

doi: 10.1126/science.1131370     URL    
[20]
Men Y F, Fu Y S, Chen Z T, Sims P A, Greenleaf W J, Huang Y Y. Anal. Chem., 2012,84(10):4262. https://pubs.acs.org/doi/10.1021/ac300761n

doi: 10.1021/ac300761n     URL    
[21]
Heyries K A, Tropini C, Vaninsberghe M, Doolin C, Petriv O I, Singhal A, Leung K, Hughesman C B, Hansen C L. Nat. Methods, 2011,8(8):649. https://doi.org/10.1038/nmeth.1640

doi: 10.1038/nmeth.1640     URL    
[22]
White A K, Heyries K A, Doolin C, VanInsberghe M, Hansen C L. Anal. Chem., 2013,85(15):7182. https://pubs.acs.org/doi/10.1021/ac400896j

doi: 10.1021/ac400896j     URL    
[23]
Thompson A M, Gansen A, Paguirigan A L, Kreutz J E, Radich J P, Chiu D T. Anal. Chem., 2014,86(24):12308. https://pubs.acs.org/doi/10.1021/ac5035924

doi: 10.1021/ac5035924     URL    
[24]
Zhu QY, Qiu L, Yu B W, Xu Y N, Gao Y B, Pan T T, Tian Q C, Song Q, Jin W, Jin Q H, Mu Y. Lab Chip, 2014,14(6):1176. http://dx.doi.org/10.1039/c3lc51327k

doi: 10.1039/c3lc51327k     URL    
[25]
Sundberg S O, Wittwer C T, Gao C, Gale B K. Anal. Chem., 2010,82(4):1546. https://pubs.acs.org/doi/10.1021/ac902398c

doi: 10.1021/ac902398c     URL    
[26]
Margulies M, Egholm M, Altman W E, Attiyal S, Baderl J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M LI, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. Nature, 2005,437:376. https://doi.org/10.1038/nature03959

doi: 10.1038/nature03959     URL    
[27]
Tawfik D S, Griffiths A D. Nat. Biotechnol., 1998,16:652. https://doi.org/10.1038/nbt0798-652

doi: 10.1038/nbt0798-652     URL    
[28]
Dressman D, Yan H, Traverso G, Kinzler K W, Vogelstein B. Proc. Natl. Acad. Sci. U. S. A., 2003,100(15):8817. http://www.pnas.org/cgi/doi/10.1073/pnas.1133470100

doi: 10.1073/pnas.1133470100     URL    
[29]
Huang H, Qi Z T, Deng L L, Zhou G H, Kajiyama T, Kambara H. Chem. Commun., 2009,27(27):4094.
[30]
Beer N R, Hindson B J, Wheeler E K, Hall S B, Rose K A, Kennedy I M, Colston B W. Anal. Chem., 2007,79(22):8471. https://pubs.acs.org/doi/10.1021/ac701809w

doi: 10.1021/ac701809w     URL    
[31]
Beer N R, Wheeler E K, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, Leung P, Arnold D W, Bailey C G, Colston B W. Anal. Chem., 2008,80(6):1854. https://pubs.acs.org/doi/10.1021/ac800048k

doi: 10.1021/ac800048k     URL    
[32]
Hindson B J, Ness K D, Masquelier D A, Belgrader P, Heredia N J, Makarewicz A J, Bright I J, Lucero M Y, Hiddessen A L, Legler T C, Kitano T K, Hodel M R, Petersen J F, Wyatt P W, Steenblock E R, Shah P H, Bousse L J, Troup C B, Mellen J C, Wittmann D K, ErndtN G, Cauley T H, Koehler R T, So A P, Dube S, Rose K A, Montesclaros L, Wang S L, Stumbo D P, Hodges S P, Romine S, Milanovich F P, White H E, Regan J F, Karlin-Neumann G A, Hindson C M, Saxonov S, Colston B W. Anal. Chem., 2011,83(22):8604. https://pubs.acs.org/doi/10.1021/ac202028g

doi: 10.1021/ac202028g     URL    
[33]
Mazutis L, Araghi A F, Miller O J, Baret J C, Frenz Lucas, Janoshazi A, Taly V, Miller B J, Hutchison J B, Link D, Griffiths A D, Ryckelynck M. Anal. Chem., 2009,81(12):4813. https://pubs.acs.org/doi/10.1021/ac900403z

doi: 10.1021/ac900403z     URL    
[34]
Pekin D, Skhiri Y, Baret J C, Le Corre D, Mazutis L, Ben S C, Millot F, El Harrak A, Hutchison J B, Larson J W, Link D R, Laurent-Puig P, Griffiths A D, Taly V. Lab Chip, 2011,11(13):2156. http://dx.doi.org/10.1039/c1lc20128j

doi: 10.1039/c1lc20128j     URL    
[35]
Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths A D, Link D R, Larson J W. Lab Chip, 2011,11(13):2167. http://dx.doi.org/10.1039/c1lc20126c

doi: 10.1039/c1lc20126c     URL    
[36]
Hatch A C, Fisher J S, Tovar A R, Hsieh A T, Lin R, Pentoney S L, Yang D L, Lee A P. Lab Chip, 2011,11(22):3838. http://dx.doi.org/10.1039/c1lc20561g

doi: 10.1039/c1lc20561g     URL    
[37]
Dangla R, Kayi S C, Baroud C N. Proc. Natl. Acad. Sci. USA, 2013,110(3):853. http://www.pnas.org/cgi/doi/10.1073/pnas.1209186110

doi: 10.1073/pnas.1209186110     URL    
[38]
Schuler F, Trotter M, Geltman M, Schwemmer F, Wadle S, Dominguez-Garrido E, Lopez M, Cervera-Acedo C, Santibanez P, Von Stetten F, Zengerle R, Paust N. Lab Chip, 2016,16(1):208. http://xlink.rsc.org/?DOI=C5LC01068C

doi: 10.1039/C5LC01068C     URL    
[39]
Xu P, Zheng X, Tao Y, Du W B. Anal. Chem., 2016,88(6):3171. https://pubs.acs.org/doi/10.1021/acs.analchem.5b04510

doi: 10.1021/acs.analchem.5b04510     URL    
[40]
Chen Z T, Liao P Y, Zhang F L, Jiang M C, Zhu Y S, Huang Y Y. Lab Chip, 2017,17(2):235. http://xlink.rsc.org/?DOI=C6LC01305H

doi: 10.1039/C6LC01305H     URL    
[41]
Novak R, Zeng Y, Shuga J, Venugopalan G, Fletcher D A, Smith M T, Mathies R A. Angew. Chem. Int. Edit., 2011,123(2):410.
[42]
Leng X F, Zhang W H, Wang C M, Cui L A, Yang C J. Lab Chip, 2010,10(21):2841. http://xlink.rsc.org/?DOI=c0lc00145g

doi: 10.1039/c0lc00145g     URL    
[43]
Chen J Y, Luo Z F, Li L, He J L, Li L Q, Zhu J W, Wu P, He L Q. Lab Chip, 2018,18(3):412. http://xlink.rsc.org/?DOI=C7LC01160A

doi: 10.1039/C7LC01160A     URL    
[44]
Zhang W F, Li N, Koga D, Zhang Y, Zeng H L, Nakajima H, Lin J M, Uchiyama K. Anal. Chem., 2018,90(8):5329. https://pubs.acs.org/doi/10.1021/acs.analchem.8b00463

doi: 10.1021/acs.analchem.8b00463     URL    
[45]
Liu W W, Zhu Y, Feng Y M, Fang J, Fang Q. Anal. Chem., 2016,89(1):822. https://pubs.acs.org/doi/10.1021/acs.analchem.6b03687

doi: 10.1021/acs.analchem.6b03687     URL    
[46]
Li X R, Zhang D F, Zhang H M, Guan Z C, Song Y L, Liu R C, Zhu Z, Yang C Y. Anal. Chem., 2018,90(4):2570. https://pubs.acs.org/doi/10.1021/acs.analchem.7b04040

doi: 10.1021/acs.analchem.7b04040     URL    
[47]
Shen F, Du W B, Kreutz J E, Fok A, Ismagilov R F. Lab Chip, 2010,10(20):2666. http://xlink.rsc.org/?DOI=c004521g

doi: 10.1039/c004521g     URL    
[48]
Shen F, Davydova E K, Du W B, Kreutz J E, Piepenburg O, Ismagilov R F. Anal. Chem., 2011,83(9):3533. https://pubs.acs.org/doi/10.1021/ac200247e

doi: 10.1021/ac200247e     URL    
[49]
Kreutz J E, Munson T, Huynh T, Shen F, Du W B, Ismagilov R F. Anal. Chem., 2011,83(21):8158. https://pubs.acs.org/doi/10.1021/ac201658s

doi: 10.1021/ac201658s     URL    
[50]
Shen F, Sun B, Kreutz J E, Davydova E K, Du W B, Reddy P L, Joseph L J, Ismagilov R F. J. Am. Chem. Soc., 2011,133(44):17705. http://dx.doi.org/10.1021/ja2060116

doi: 10.1021/ja2060116     URL    
[51]
彭年才(PengN C), 数字PCR——原理、技术及应用 (Digital PCR-Principles, Technologies and Applications). 北京: 科学出版社( Beijing: Science Press), 2017. 204.
[52]
Farago N, Kocsis A K, Lovas S, Molnar G, Boldog E, Rozsa M, Szemenyei V, Vamos E, Nagy L I, Tamas G, Puskas L G. Biotechniques, 2013,54(6):327.
[53]
Jim F H, Simon C, Carole A F. Clin. Chem., 2015,61(1):79. https://academic.oup.com/clinchem/article/61/1/79/5611450

doi: 10.1373/clinchem.2014.221366     URL    
[54]
Cui X Y, Cao L, Huang Y L, Bai D, Huang S, Lin M, Yang Q Z, Lu T J, Xu F, Li F. Analyst, 2018,143:3011.
[55]
Wiencke J K, Bracci P M, Hsuang G, Zheng S, Hansen H, Wrensch M R, Rice T, Eliot M, Kelsey K T. Epigenetics, 2014,9(10):1360. http://dx.doi.org/10.4161/15592294.2014.967589

doi: 10.4161/15592294.2014.967589     URL    
[56]
Sartore-Bianchi A, Pietrantonio F, Amatu A, Milione M, Cassingena A, Ghezzi S, Caporale M, Berenato R, Falcomatà C, Pellegrinelli A, Bardelli A, Nichelatti M, Tosi F, De Braud F, Di Nicolantonio F, Barault L, Siena S. Eur. J. Cancer, 2017,71:43. https://linkinghub.elsevier.com/retrieve/pii/S0959804916325394

doi: 10.1016/j.ejca.2016.10.032     URL    
[57]
Hubers A J, Heideman D A M, Yatabe Y, Wood M D, Tull J, Taron M, Molina M A, Mayo C, Bertran-Alamillo J, Herder G J M, Koning R, Sie D, Ylstra B, Meijer G A, Snijders P J F, Witte B I, Postmus PE, Smith E F, Thunnissen E. Lung Cancer, 2013,82(1):38. https://linkinghub.elsevier.com/retrieve/pii/S0169500213003206

doi: 10.1016/j.lungcan.2013.07.011     URL    
[58]
Beaver J A, Jelovac D, Balukrishna S, Cochran R L, Croessmann S, Zabransky D J, Wong H Y, Valda Toro P, Cidado J, Blair B G, Chu D, Burns T, Higgins M J, Stearns V, Jacobs L, Habibi M, Lange J, Hurley P J, Lauring J, Van Den Berg D A, Kessler J, Jeter S, Samuels M L, Maar D, Cope L, Cimino-Mathews A, Argani P, Wolff A C, Park B H. Clin. Cancer Res., 2014,20(10):2643. http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-13-2933

doi: 10.1158/1078-0432.CCR-13-2933     URL    
[59]
Oxnard G R, Paweletz C P, Kuang Y, Mach S L, O’Connell A, Messineo M M, Luke J J, Butaney M, Kirschmeier P, Jackman D M, Janne P A. Clin. Cancer Res., 2014,20(6):1698. http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-13-2482

doi: 10.1158/1078-0432.CCR-13-2482     URL    
[60]
Mangolini A, Ferracin M, Zanzi M V, Saccenti E, Ebnaof S O, Poma V V, Sanz J M, Passaro A, Pedriali M, Frassoldati A, Querzoli P, Sabbioni S, Carcoforo P, Hollingsworth A, Negrini M. Biomark Res., 2015,3(1):12. http://biomarkerres.biomedcentral.com/articles/10.1186/s40364-015-0037-0

doi: 10.1186/s40364-015-0037-0     URL    
[61]
Lo Y M D, Corbetta N, Chamberlain P F, Rai V, Sargent I L, Redman CWG, Wainscoat J S. Lancet, 1997,350(9076):485. https://linkinghub.elsevier.com/retrieve/pii/S0140673697021740

doi: 10.1016/S0140-6736(97)02174-0     URL    
[62]
Lo Y M D, Lun F M F, Chan K C A, Lun F M F, Chan K C A, Tsui N B Y, Chong Ka C, Lau T K, Leung T Y, Zee B C Y, Cantor C R, Chiu R W K. Proc. Natl. Acad. Sci. U. S. A., 2007,104(32):13116. http://www.pnas.org/cgi/doi/10.1073/pnas.0705765104

doi: 10.1073/pnas.0705765104     URL    
[63]
Tsui N B Y, Kadir R A, Chan K C A, Chi C, Mellars G, Tuddenham E G, Leung T Y, Lau T K, Chiu R W K, Lo Y M D. Blood, 2011,117(13):3684. http://dx.doi.org/10.1182/blood-2010-10-310789

doi: 10.1182/blood-2010-10-310789     URL    
[64]
Strain M C, Lada S M, Luong T, Rought S E, Gianella S, Terry V H, Spina C A, Woelk CH, Richman D D. PloS One, 2013,8(4):e55943. https://dx.plos.org/10.1371/journal.pone.0055943

doi: 10.1371/journal.pone.0055943     URL    
[65]
Corbisier P, Bhat S, Partis L, Xie V R D, Emslie K R. Anal. Bioanal. Chem., 2010,396(6):2143. http://link.springer.com/10.1007/s00216-009-3200-3

doi: 10.1007/s00216-009-3200-3     URL    
[66]
Kim T G, Jeong S, Cho K. Appl. Microbiol. Biot., 2014,98(13):6105. http://link.springer.com/10.1007/s00253-014-5794-4

doi: 10.1007/s00253-014-5794-4     URL    
[67]
Boettger L M, Handsaker R E, Zody M C, McCarroll S A. Nat. Genet., 2012,44(8):881. https://doi.org/10.1038/ng.2334

doi: 10.1038/ng.2334     URL    
[68]
Mock U, Hauber I, Fehse B. Nat. Protoc., 2016,11(3):598. https://doi.org/10.1038/nprot.2016.027

doi: 10.1038/nprot.2016.027     URL    
[1] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[2] 范昭璇, 赵亮, 张学记. 循环肿瘤DNA的检测:从数字化到测序[J]. 化学进展, 2019, 31(10): 1384-1395.
[3] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[4] 黄笛, 项楠, 唐文来, 张鑫杰, 倪中华. 基于微流控技术的循环肿瘤细胞分选研究[J]. 化学进展, 2015, 27(7): 882-912.
[5] 林彩琴, 姚波* . 数字PCR技术进展[J]. 化学进展, 2012, 24(12): 2415-2423.
阅读次数
全文


摘要

数字PCR技术的发展及应用