English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 519-535 DOI: 10.7536/PC190907 前一篇   后一篇

• 综述 •

黏弹性流体在微粒被动操控技术中的应用

倪陈1, 姜迪1,**(), 徐幼林1, 唐文来2   

  1. 1.南京林业大学机械电子工程学院 南京 210037
    2.南京师范大学电气与自动化工程学院 江苏省三维打印设备与制造重点实验室 南京 210023
  • 收稿日期:2019-09-09 修回日期:2019-11-11 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 姜迪
  • 基金资助:
    国家自然科学基金项目(51805270); 国家自然科学基金项目(51805272); 江苏省重点研发计划项目资助(BE2018010-1); 江苏省重点研发计划项目资助(BE2018010-2)

Application of Viscoelastic Fluid in Passive Particle Manipulation Technologies

Chen Ni1, Di Jiang1,**(), Youlin Xu1, Wenlai Tang2   

  1. 1.School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
    2.School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210023, China
  • Received:2019-09-09 Revised:2019-11-11 Online:2020-05-15 Published:2020-02-20
  • Contact: Di Jiang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51805270); National Natural Science Foundation of China(51805272); Key Technology R&D Program of Jiangsu Province(BE2018010-1); Key Technology R&D Program of Jiangsu Province(BE2018010-2)

因能实现微米尺度粒子的精确操控,微流控技术已被广泛运用于医学、制药、生物和化学等领域,其中无需外场作用的被动操控技术由于其简单性和自主性更是成为研究热点。与其他被动操控技术相比,黏弹性聚焦技术更易实现微粒的三维聚焦且能操控微粒的尺度跨度大、流体流量范围广。因此,本文综述了黏弹性流体在微粒被动操控应用中的最新研究进展。首先,介绍了微粒在不同结构流道内的黏弹性流体中进行迁移的受力机理,进一步详细阐述了黏弹性聚焦、黏弹性分选、黏弹性混合以及其他黏弹性微粒操控应用研究进展,最后对研究黏弹性流体流动特性和在其内微粒迁移运动规律的数值模拟方法进行了介绍,并在分析现有问题的基础上对黏弹性微流控技术未来的发展作出了展望。

Microfluidics, which can precisely manipulate micron-sized particles, has been widely used in medical, pharmaceutical, biological and chemical fields. The passive manipulation technologies without external field effect have become a research hotspot because of their simplicity and autonomy. Compared with other passive manipulation technologies, viscoelastic focusing technology makes it easier to achieve three-dimensional focusing of particles, and can manipulate particles with a large-scale span and a wide range of fluid flow. Therefore, this paper reviews the latest research on viscoelastic fluids in particle passive manipulation applications. Firstly, the force mechanism of particles in viscoelastic fluid in different microchannel structure is introduced. Then, the research progress of viscoelastic focusing, sorting, mixing and other viscoelastic particle manipulation applications is further elaborated. Finally, the numerical simulation method for studying the flow characteristics of viscoelastic fluids and the movement law of particles in it are introduced, and some prospects for the future development of viscoelastic microfluidics are made based on the analysis of existing problems.

Contents

1 Introduction

2 Viscoelastic focusing

2.1 Viscoelastic focusing in straight microchannels

2.2 Viscoelastic focusing in curved microchannels

3 Viscoelastic sorting

3.1 Sheath-flow sorting

3.2 Sheath-free sorting

4 Other applications

5 Numerical simulation

6 Conclusion and prospects

()
图1 粒子受惯性升力在直流道中的平衡位置示意图: (a) 圆形截面;(b)方形截面[32];(c)矩形截面[32];(d)增加雷诺数[32];(e)加入黏弹力[61]
Fig. 1 Schematic diagram of the equilibrium position of particles subjected to inertial lift in straight microchannels (a) circular section;(b) square section[32];(c) rectangular section[32];(d) Reynolds number increased [32];(e) elastic force added[61]
图2 粒子在不同条件下在不同直流道中的聚焦图 (a)0.05 wt% PEO 溶液(左)和8% PVP溶液(右)在方形直流道中[61];(b)1% PEO溶液在圆柱形直流道中[63];(c)1% PEO溶液在圆柱形直流道中[64];(d)5 ppm λ-DNA溶液在方形直流道中[37];(e)0.8 wt% HA溶液在方形直流道中[60]
Fig. 2 Particles focusing in different straight microchannels under different conditions (a) 0.05 wt% PEO solution(left) and 8% PVP solution(right) in straight square microchannel[61];(b) 1% PEO solution in straight cylindrical microchannel[63];(c) 1% PEO solution in straight cylindrical microchannel[64];(d) 5ppm λ-DNA solution in straight square microchannel[37];(e) 0.8 wt% HA solution in straight square microchannel[60]
图3 (a)红细胞的二维聚焦图[77];(b)粒子在不同深宽比矩形直流道中聚焦图[78];(c)两组不同尺寸粒子的聚焦图[78];(d)粒子聚焦四个阶段示意图[79];(e)双入口流道示意图[80]
Fig. 3 (a) Two-dimensional focusing of red blood cells[77];(b) Particle focusing map in straight rectangular microchannels with different aspect ratios[78];(c) Focusing map of two different sizes of particles[78];(d) Schematic diagram of four stages of particle focusing[79];(e) Schematic diagram of double inlet channel[80]
图4 (a)直径为1.5和10 μm粒子的聚焦图[86];(b)粒子聚焦六个阶段示意图[85];(c)螺旋流道中粒子的三维单线聚焦图[84]
Fig. 4 (a) Focusing map of 1.5 and 10 μm diameter particles[86];(b) Schematic diagram of six stages of particle focusing[85];(c) Three-dimensional single-line focusing map of particles in a spiral microchannel[84]
图5 利用鞘流分离的流道结构示意图[100]
Fig. 5 Schematic diagram of the microchannel structure using sheath-flow sorting[100]
图6 (a)粒子在T形流道分离示意图[102];(b)混合粒子在不同条件下的迁移情况[102];(c)球形和花生形粒子的迁移情况[103]
Fig. 6 (a) Schematic diagram of particle separation in a T-shaped microchannel[102];(b) Migration of mixed particles under different conditions[102];(c) Migration of spherical and peanut-shaped particles[103]
图7 (a)外泌体和细胞外囊泡所在流道结构示意图[105];(b)多螺旋结构流道示意图[88];(c)具有确定性横向位移阵列的流道结构示意图[106]
Fig. 7 (a) Schematic diagram of the microchannel structure in which exosomes and EVs are located[105];(b) Schematic diagram of a multi-spiral microchannel[88];(c) Schematic diagram of a microchannel with deterministic lateral displacement arrays[106]
图8 (a)粒子从黏弹性流体迁移至牛顿流体的微流道示意图[108];(b)粒子从牛顿流体迁移至黏弹性流体的微流道示意图[111];(c)粒子在三种不同(鞘液/样品)条件下的分离示意图[111]
Fig. 8 (a) Schematic diagram of the microchannel of particles migration from viscoelastic fluid to Newtonian fluid[108];(b) Schematic diagram of the microchannel of particles migration from Newtonian fluid to viscoelastic fluid[111];(c) Schematic diagram of the separation of particles under three different conditions(sheath/sample)[111]
图9 (a)可变形性粒子和刚性粒子在流道中的迁移示意图[112];(b)刚性PS粒子和新鲜红细胞的分离快照图[112];(c)混合粒子的分离图[114]
Fig. 9 (a) Schematic diagram of the migration of deformable particles and rigid particles in the microchannel[112];(b) Snapshot of the separation of rigid PS particles and fresh RBCs[112];(c) Separation map of mixed particles[114]
图10 (a)粒子在具有单侧腔阵结构流道中迁移示意图[117];(b)双螺旋流道结构示意图[87];(c)二段式流道结构示意图[118];(d)粒子在二段式结构流道中迁移示意图[119, 120]
Fig. 10 (a) Schematic diagram of particle migration in a microchannel with a single-sided cavity array structure [117];(b) Schematic diagram of a double spiral microchannel[87];(c) Schematic diagram of a microchannel with two-stage structure[118];(d) Schematic diagram of particle migration in a microchannel with two-stage structure[119, 120]
表1 黏弹性微流控中各种粒子分选方法的概括
Table 1 Summary of various particle sorting methods in viscoelastic microfluidics
图11 (a)边井直流道中流体混合示意图[124];(b)十字槽微流道示意图[129]
Fig. 11 (a) Schematic diagram of fluid mixing in a straight microchannel the side channel[124];(b) Schematic diagram of a microchannel with cross-slot region[129]
[1]
Yeo L Y , Chang H , Chan P P Y , Friend J R . Small, 2011,7(1):12. http://dx.doi.org/10.1002/smll.201000946

doi: 10.1002/smll.201000946     URL    
[2]
Sackmann E K , Fulton A L , Beebe D J . Nature, 2014,507(7491):181. http://dx.doi.org/10.1038/nature13118

doi: 10.1038/nature13118     URL    
[3]
Gossett D R , Weaver W M , Mach A J , Hur S C , Tse H T K , Lee W , Amini H , Carlo D D . Analytical & Bioanalytical Chemistry, 2010,397(8):3249.
[4]
Pratt E D , Huang C , Hawkins B G , Gleghorn J P , Kirby B J . Chemical Engineering Science, 2011,66(7):1508. http://dx.doi.org/10.1016/j.ces.2010.09.012

doi: 10.1016/j.ces.2010.09.012     URL    
[5]
Karimi A , Yazdi S , Ardekani A M . Biomicrofluidics, 2013,7(2):21501. http://aip.scitation.org/doi/10.1063/1.4799787

doi: 10.1063/1.4799787     URL    
[6]
Haeberle S , Zengerle R . Lab on A Chip, 2007,7(9):1094. http://xlink.rsc.org/?DOI=b706364b

doi: 10.1039/b706364b     URL    
[7]
Yin H , Marshall D . Current Opinion in Biotechnology, 2012,23(1):110. http://dx.doi.org/10.1016/j.copbio.2011.11.002

doi: 10.1016/j.copbio.2011.11.002     URL    
[8]
唐文来(Tang W L), 项楠(Xiang N), 黄笛(Huang D), 张鑫杰(Zhang X J), 顾兴中(Gu X Z), 倪中华(Ni Z H) . 化学进展 (Progress in Chemistry), 2014,26(06):1050.
[9]
林炳承(Lin B C) . 分析化学 (Chinese J. Anal. Chem.), 2016,44(04):491.
[10]
Wong A H , Li H , Jia Y , Mak P , Martins R P D S , Liu Y , Vong C M , Wong H C , Wong P K , Wang H . Scientific Reports, 2017,7(1):9109. https://doi.org/10.1038/s41598-017-08831-z

doi: 10.1038/s41598-017-08831-z     URL    
[11]
Yan S , Zhang J , Alici G , Du H , Zhu Y , Li W . Lab on A Chip, 2014,14(16):2993. http://dx.doi.org/10.1039/c4lc00343h

doi: 10.1039/c4lc00343h     URL    
[12]
Chami B , Socol M , Manghi M , Bancaud A . Soft Matter, 2018: 10.
[13]
Chen X , Ren Y , Hou L , Feng X , Jiang H . Nanoscale, 2019,11(13):6410. http://xlink.rsc.org/?DOI=C8NR09148J

doi: 10.1039/C8NR09148J     URL    
[14]
Ahmed R , Destgeer G , Afzal M , Park J , Ahmed H , Jung J H , Park K , Yoon T , Sung H J . Analytical Chemistry, 2017,89(24):13313. https://pubs.acs.org/doi/10.1021/acs.analchem.7b03474

doi: 10.1021/acs.analchem.7b03474     URL    
[15]
Destgeer G , Jung J H , Park J , Ahmed H , Sung H J . Analytical Chemistry, 2017,89(1):736. https://pubs.acs.org/doi/10.1021/acs.analchem.6b03314

doi: 10.1021/acs.analchem.6b03314     URL    
[16]
Ahmed H , Destgeer G , Park J , Afzal M , Sung H J . Analytical Chemistry, 2018,90(14):8546. https://pubs.acs.org/doi/10.1021/acs.analchem.8b01593

doi: 10.1021/acs.analchem.8b01593     URL    
[17]
Kim M , Lee D , Youn J R , Song Y S . RSC Advances, 2016,6(38):32090. http://xlink.rsc.org/?DOI=C6RA03146C

doi: 10.1039/C6RA03146C     URL    
[18]
Jian Z , Chen C , Vedantam P , Brown V , Tzeng T R J , Xuan X . Journal of Micromechanics & Microengineering, 2012,22(10):105018.
[19]
Hejazian M , Li W , Nguyen N . Lab on A Chip, 2015,15(4):959. http://xlink.rsc.org/?DOI=C4LC01422G

doi: 10.1039/C4LC01422G     URL    
[20]
Macdonald M P , Spalding G C , Dholakia K . Nature, 2003,426(6965):421. http://www.nature.com/articles/nature02144

doi: 10.1038/nature02144     URL    
[21]
Bok K S , Youl Y S , Hyung J S , Soo K S . Analytical Chemistry, 2008,80(7):2628. https://pubs.acs.org/doi/10.1021/ac8000918

doi: 10.1021/ac8000918     URL    
[22]
Kayani A A , Khashayar K , Ward S A , Arnan M , Kourosh K Z . Biomicrofluidics, 2012,6(3):1.
[23]
Xiang N , Ni Z . Biomedical Microdevices, 2015,17(6):110. http://link.springer.com/10.1007/s10544-015-0018-y

doi: 10.1007/s10544-015-0018-y     URL    
[24]
Carlo D D . Lab on A Chip, 2009,9(21):3038. http://xlink.rsc.org/?DOI=b912547g

doi: 10.1039/b912547g     URL    
[25]
Hamed A , Wonhee L , Dino D C . Lab on A Chip, 2014,14(15):2739. http://dx.doi.org/10.1039/c4lc00128a

doi: 10.1039/c4lc00128a     URL    
[26]
Hood K , Lee S , Roper M . Journal of Fluid Mechanics, 2015,765:452. https://www.cambridge.org/core/product/identifier/S0022112014007393/type/journal_article

doi: 10.1017/jfm.2014.739     URL    
[27]
Zhang J , Yan S , Yuan D , Alici G , Nguyen N T , Ebrahimi W M , Li W . Lab on A Chip, 2015,16(1):10. http://xlink.rsc.org/?DOI=C5LC01159K

doi: 10.1039/C5LC01159K     URL    
[28]
Segre G , Silberberg A . J. Fluid Mech., 1962,14:136. https://www.cambridge.org/core/product/identifier/S0022112062001111/type/journal_article

doi: 10.1017/S0022112062001111     URL    
[29]
Segre G , Silberberg A . Nature, 1961,189:209. https://doi.org/10.1038/189209a0

doi: 10.1038/189209a0     URL    
[30]
Martel J M , Toner M . Annual Review of Biomedical Engineering, 2014,16(1):371. http://www.annualreviews.org/doi/10.1146/annurev-bioeng-121813-120704

doi: 10.1146/annurev-bioeng-121813-120704     URL    
[31]
Liu C , Hu G , Jiang X , Sun J . Lab on a Chip, 2015,15(4):1168. http://xlink.rsc.org/?DOI=C4LC01216J

doi: 10.1039/C4LC01216J     URL    
[32]
Amini H , Lee W , Di Carlo D . Lab on a Chip, 2014,14(15):2739. http://dx.doi.org/10.1039/c4lc00128a

doi: 10.1039/c4lc00128a     URL    
[33]
Sajeesh P , Sen A K . Microfluidics and Nanofluidics, 2014,17(1):1. http://dx.doi.org/10.1007/s10404-013-1291-9

doi: 10.1007/s10404-013-1291-9     URL    
[34]
项楠(Xiang N), 朱晓璐(Zhu X L), 倪中华(Ni Z H) . 化学进展 (Progress in Chemistry), 2011,23(09):1945.
[35]
Karnis A , Goldsmith H L , Mason S G . 1963,200(4902):159.
[36]
Lim E J , Ober T J , Edd J F , Desai S P , Neal D , Bong K W , Doyle P S , Mckinley G H , Toner M . Nature Communications, 2014,5:4120. https://doi.org/10.1038/ncomms5120

doi: 10.1038/ncomms5120     URL    
[37]
Kim B , Kim J M . Biomicrofluidics, 2016,10(2):24111. http://aip.scitation.org/doi/10.1063/1.4944628

doi: 10.1063/1.4944628     URL    
[38]
Xuan X , Zhu J , Church C . Microfluidics and Nanofluidics, 2010,9(1):1. http://link.springer.com/10.1007/s10404-010-0602-7

doi: 10.1007/s10404-010-0602-7     URL    
[39]
Ateya D A , Erickson J S , Howell P B , Hilliard L R , Golden J P , Ligler F S . Analytical and Bioanalytical Chemistry, 2008,391(5):1485. http://link.springer.com/10.1007/s00216-007-1827-5

doi: 10.1007/s00216-007-1827-5     URL    
[40]
Andreas L , Thomas L . Chemical Society Reviews, 2010,39(3):1203. http://xlink.rsc.org/?DOI=b915999c

doi: 10.1039/b915999c     URL    
[41]
Dino D C , Daniel I , Tompkins R G , Mehmet T . Proceedings of the National Academy of Sciences of the United States of America, 2007,104(48):18892.
[42]
Asmolov E S . Journal of Fluid Mechanics, 1999,381:63. https://www.cambridge.org/core/product/identifier/S0022112098003474/type/journal_article

doi: 10.1017/S0022112098003474     URL    
[43]
Matas J , Morris J F , Guazzelli É . Journal of Fluid Mechanics, 1999,515:171. http://www.journals.cambridge.org/abstract_S0022112004000254

doi: 10.1017/S0022112004000254     URL    
[44]
Lu X , Liu C , Hu G , Xuan X . Journal of Colloid and Interface Science, 2017,500:182. https://linkinghub.elsevier.com/retrieve/pii/S0021979717304113

doi: 10.1016/j.jcis.2017.04.019     URL    
[45]
Zeng L , Najjar F , Balachandar S , Fischer P . Physics of Fluids, 2009,21(3):33302. http://aip.scitation.org/doi/10.1063/1.3082232

doi: 10.1063/1.3082232     URL    
[46]
De Souza Mendes P R . Journal of Non-Newtonian Fluid Mechanics, 2007,147(1):109. https://linkinghub.elsevier.com/retrieve/pii/S0377025707001887

doi: 10.1016/j.jnnfm.2007.07.010     URL    
[47]
Huang P Y , Feng J , Hu H H , Joseph D D . Journal of Fluid Mechanics, 2000,343(343):73. https://www.cambridge.org/core/product/identifier/S0022112097005764/type/journal_article

doi: 10.1017/S0022112097005764     URL    
[48]
Ho B P , Leal L G . Journal of Fluid Mechanics, 1976,76(4):783. https://www.cambridge.org/core/product/identifier/S002211207600089X/type/journal_article

doi: 10.1017/S002211207600089X     URL    
[49]
Bird R B , Armstrong R C , Hassager O E , Curtiss C F , Middleman S . Physics Today, 1978,31(2):54.
[50]
Villone M M , D’Avino G , Hulsen M A , Greco F , Maffettone P L . Journal of Non-Newtonian Fluid Mechanics, 2013,195:1. https://linkinghub.elsevier.com/retrieve/pii/S0377025712002765

doi: 10.1016/j.jnnfm.2012.12.006     URL    
[51]
Magda J J , Lou J , Baek S G , Devries K L . Polymer, 1991,32(11):2000. https://linkinghub.elsevier.com/retrieve/pii/003238619190165F

doi: 10.1016/0032-3861(91)90165-F     URL    
[52]
Larsen V F . Polymer, 1990,31(4):766.
[53]
Pathak J A , Ross D , Migler K B . Physics of Fluids, 2004,16(11):4028. http://aip.scitation.org/doi/10.1063/1.1792011

doi: 10.1063/1.1792011     URL    
[54]
Leshansky A M , Bransky A , Korin N , Dinnar U . Physical Review Letters, 2007,98(23):234501. https://link.aps.org/doi/10.1103/PhysRevLett.98.234501

doi: 10.1103/PhysRevLett.98.234501     URL    
[55]
Yuan D , Zhao Q , Yan S , Tang S Y , Alici G , Zhang J , Li W . Lab on A Chip, 2018,18(4):551. http://xlink.rsc.org/?DOI=C7LC01076A

doi: 10.1039/C7LC01076A     URL    
[56]
D’Avino G , Greco F , Maffettone P L . Annual Review of Fluid Mechanics, 2017,49(1):341. http://www.annualreviews.org/doi/10.1146/annurev-fluid-010816-060150

doi: 10.1146/annurev-fluid-010816-060150     URL    
[57]
D Avino G , Maffettone P L , Greco F , Hulsen M A . Journal of Non-Newtonian Fluid Mechanics, 2010,165(9/10):466. https://linkinghub.elsevier.com/retrieve/pii/S0377025710000261

doi: 10.1016/j.jnnfm.2010.01.024     URL    
[58]
Caserta S , D’Avino G , Greco F , Guido S , Maffettone P L . Soft Matter, 2011,7(3):1100. http://dx.doi.org/10.1039/c0sm00640h

doi: 10.1039/c0sm00640h     URL    
[59]
Villone M M , D’Avino G , Hulsen M A , Greco F , Maffettone P L . Journal of Non-Newtonian Fluid Mechanics, 2011,166(23/24):1396. https://linkinghub.elsevier.com/retrieve/pii/S0377025711002205

doi: 10.1016/j.jnnfm.2011.09.003     URL    
[60]
Del Giudice F , Sathish S , D'Avino G , Shen A Q . Analytical Chemistry, 2017,89(24):13146. https://pubs.acs.org/doi/10.1021/acs.analchem.7b02450

doi: 10.1021/acs.analchem.7b02450     URL    
[61]
Yang S Y , Kim J Y , Lee S J , Lee S S , Min K J . Lab on A Chip, 2011,11(2):266. http://dx.doi.org/10.1039/c0lc00102c

doi: 10.1039/c0lc00102c     URL    
[62]
Seo K W , Kang Y J , Lee S J . Physics of Fluids, 2014,26(6):63301. http://aip.scitation.org/doi/10.1063/1.4882265

doi: 10.1063/1.4882265     URL    
[63]
D’Avino G , Romeo G , Villone M M , Greco F , Netti P A , Maffettone P L . Lab on a Chip, 2012,12(9):1638. http://dx.doi.org/10.1039/c2lc21154h

doi: 10.1039/c2lc21154h     URL    
[64]
Seo K W , Byeon H J , Huh H K , Lee S J . RSC Adv, 2014,4(7):3512. http://xlink.rsc.org/?DOI=C3RA43522A

doi: 10.1039/C3RA43522A     URL    
[65]
Del Giudice F , D’Avino G , Greco F , Netti P A , Maffettone P L . Microfluidics and Nanofluidics, 2015,19(1):95. http://link.springer.com/10.1007/s10404-015-1552-x

doi: 10.1007/s10404-015-1552-x     URL    
[66]
Song H Y , Lee S H , Salehiyan R , Hyun K . Rheologica Acta, 2016,55(11/12):889. http://link.springer.com/10.1007/s00397-016-0962-3

doi: 10.1007/s00397-016-0962-3     URL    
[67]
Martynova L , Locascio L E , Gaitan M , Kramer G W , Christensen R G , Maccrehan W A . Analytical Chemistry, 1997,69(23):4783. https://pubs.acs.org/doi/10.1021/ac970558y

doi: 10.1021/ac970558y     URL    
[68]
Xiang N , Yi H , Chen K , Wang S , Ni Z . Journal of Micromechanics and Microengineering, 2013,23(2):025016. https://iopscience.iop.org/article/10.1088/0960-1317/23/2/025016

doi: 10.1088/0960-1317/23/2/025016     URL    
[69]
Duffy D C , McDonald J C , Schueller O J , Whitesides G M . Analytical chemistry, 1998,70(23):4974. https://pubs.acs.org/doi/10.1021/ac980656z

doi: 10.1021/ac980656z     URL    
[70]
Becker H , Gaertner C . Analytical and Bioanalytical Chemistry, 2008,390(1):89. http://link.springer.com/10.1007/s00216-007-1692-2

doi: 10.1007/s00216-007-1692-2     URL    
[71]
Zhang X , Huang D , Tang W , Jiang D , Chen K , Yi H , Xiang N , Ni Z . RSC Advances, 2016,6(12):9734. http://xlink.rsc.org/?DOI=C5RA27092H

doi: 10.1039/C5RA27092H     URL    
[72]
Ha D , Hong J , Shin H , Kim T . Lab on A Chip, 2016,16(22):4296. http://xlink.rsc.org/?DOI=C6LC01058J

doi: 10.1039/C6LC01058J     URL    
[73]
Kim J Y , Ahn S W , Lee S S , Kim J M . Lab on A Chip, 2012,12(16):2807. http://dx.doi.org/10.1039/c2lc40147a

doi: 10.1039/c2lc40147a     URL    
[74]
Holzner G , Stavrakis S , Demello A . Analytical Chemistry, 2017,89(21):11653. https://pubs.acs.org/doi/10.1021/acs.analchem.7b03093

doi: 10.1021/acs.analchem.7b03093     URL    
[75]
Lim E J , Ober T J , Edd J F , Desai S P , Neal D , Bong K W , Doyle P S , Mckinley G H , Toner M . Nature Communications, 2014,5(1):4120. https://doi.org/10.1038/ncomms5120

doi: 10.1038/ncomms5120     URL    
[76]
Howard M P , Panagiotopoulos A Z , Nikoubashman A . The Journal of Chemical Physics, 2015,142(22):224908. http://aip.scitation.org/doi/10.1063/1.4922323

doi: 10.1063/1.4922323     URL    
[77]
Seo K W , Ha Y R , Lee S J . Applied Physics Letters, 2014,104(21):213702. http://aip.scitation.org/doi/10.1063/1.4880615

doi: 10.1063/1.4880615     URL    
[78]
Liu C , Xue C , Chen X , Shan L , Tian Y , Hu G . Analytical Chemistry, 2015,87(12):6041. https://pubs.acs.org/doi/10.1021/acs.analchem.5b00516

doi: 10.1021/acs.analchem.5b00516     URL    
[79]
Xiang N , Dai Q , Ni Z . Applied Physics Letters, 2016,109(13):134101. http://aip.scitation.org/doi/10.1063/1.4963294

doi: 10.1063/1.4963294     URL    
[80]
Yang S H , Lee D J , Youn J R , Song Y S . Analytical Chemistry, 2017,89(6):3639. https://pubs.acs.org/doi/10.1021/acs.analchem.6b05052

doi: 10.1021/acs.analchem.6b05052     URL    
[81]
Yuan D , Zhang J , Yan S , Pan C , Alici G , Nguyen N T , Li W H . Biomicrofluidics, 2015,9(4):44108. http://aip.scitation.org/doi/10.1063/1.4927494

doi: 10.1063/1.4927494     URL    
[82]
Berger S A , Talbot L , Yao L S . Annual Review of Fluid Mechanics, 1983,15(1):461. http://www.annualreviews.org/doi/10.1146/annurev.fl.15.010183.002333

doi: 10.1146/annurev.fl.15.010183.002333     URL    
[83]
Yuan D , Sluyter R , Zhao Q , Tang S , Yan S , Yun G , Li M , Zhang J , Li W . Microfluidics and Nanofluidics, 2019,23(3):41. https://doi.org/10.1007/s10404-019-2204-3

doi: 10.1007/s10404-019-2204-3     URL    
[84]
Xiang N , Ni Z , Yi H . Electrophoresis, 2018,39(2):417. http://doi.wiley.com/10.1002/elps.v39.2

doi: 10.1002/elps.v39.2     URL    
[85]
Xiang N , Zhang X , Dai Q , Cheng J , Chen K , Ni Z . Lab on a Chip, 2016,16(14):2626. http://xlink.rsc.org/?DOI=C6LC00376A

doi: 10.1039/C6LC00376A     URL    
[86]
Lee D J , Brenner H , Youn J R , Song Y S . Scientific Report, 2013,3(1):3258.
[87]
Liu C , Ding B , Xue C , Tian Y , Hu G , Sun J . Analytical Chemistry, 2016,88(24):12547. https://pubs.acs.org/doi/10.1021/acs.analchem.6b04564

doi: 10.1021/acs.analchem.6b04564     URL    
[88]
Zhou Y , Ma Z , Tayebi M , Ai Y . Analytical Chemistry, 2019,91(7):4577. https://pubs.acs.org/doi/10.1021/acs.analchem.8b05749

doi: 10.1021/acs.analchem.8b05749     URL    
[89]
Brandon W P , Prashant K S , Henny C V D M , Henk J B . Applied and Environmental Microbiology, 2012,78(1):120. http://dx.doi.org/10.1128/AEM.06780-11

doi: 10.1128/AEM.06780-11     URL    
[90]
Jay W , Ben C , Megan F , David B . Analytical Chemistry, 2010,82(19): p. 8320. https://pubs.acs.org/doi/10.1021/ac101866p

doi: 10.1021/ac101866p     URL    
[91]
黄笛(Huang D), 项楠(Xiang N), 唐文来(Tang W L), 张鑫杰(Zhang X J), 倪中华(Ni Z H) . 化学进展 (Progress in Chemistry), 2015,27(07):882.
[92]
Dash S , Mohanty S . Electrophoresis, 2015,35(18):2656. http://doi.wiley.com/10.1002/elps.v35.18

doi: 10.1002/elps.v35.18     URL    
[93]
Plouffe B D , Murthy S K , Lewis L H . Reports on Progress in Physics, 2015,78(1):16601. https://iopscience.iop.org/article/10.1088/0034-4885/78/1/016601

doi: 10.1088/0034-4885/78/1/016601     URL    
[94]
Cho H , Kim J , Song H , Sohn K Y , Jeon M , Han K H . Analyst, 2018,143:2936. http://xlink.rsc.org/?DOI=C7AN01979C

doi: 10.1039/C7AN01979C     URL    
[95]
Wu X Y , Wu H Y , Hu D H . Science China Technological Sciences, 2011,54(12):3311. http://link.springer.com/10.1007/s11431-011-4593-8

doi: 10.1007/s11431-011-4593-8     URL    
[96]
Yan S , Zhang J , Yuan D , Li W . Electrophoresis, 2016,38(2):238. http://doi.wiley.com/10.1002/elps.201600386

doi: 10.1002/elps.201600386     URL    
[97]
Daniel R G , Westbrook M W , Albert J M , Soojung Claire H , Henry Tat Kwong T , Wonhee L , Hamed A , Dino D C . Analytical and Bioanalytical Chemistry, 2010,397(8):3249. http://link.springer.com/10.1007/s00216-010-3721-9

doi: 10.1007/s00216-010-3721-9     URL    
[98]
Th S C , Reyes C D , López G P . Lab on A Chip, 2015,15(5):1230. http://xlink.rsc.org/?DOI=C4LC01246A

doi: 10.1039/C4LC01246A     URL    
[99]
Tsoi H , Isozaki A , Goda K . Particle/Cell Manipulation and Sorting with Surface Acoustic Waves In A Microfluidic Device. 2016, DOI: 10.1109/MHS.2016.7824165.
[100]
Nam J , Lim H , Kim D , Jung H , Shin S . Lab on a Chip, 2012,12(7):1347. http://dx.doi.org/10.1039/c2lc21304d

doi: 10.1039/c2lc21304d     URL    
[101]
Lim H , Nam J , Shin S . Microfluidics and Nanofluidics, 2014,17(4):683. http://dx.doi.org/10.1007/s10404-014-1353-7

doi: 10.1007/s10404-014-1353-7     URL    
[102]
Lu X , Xuan X . Analytical Chemistry, 2015,87(12):6389. https://pubs.acs.org/doi/10.1021/acs.analchem.5b01432

doi: 10.1021/acs.analchem.5b01432     URL    
[103]
Lu X , Xuan X . Analytical Chemistry, 2015,87(22):11523. https://pubs.acs.org/doi/10.1021/acs.analchem.5b03321

doi: 10.1021/acs.analchem.5b03321     URL    
[104]
Xu W , Hou Z , Liu Z , Wu Z . Microfluidics and Nanofluidics, 2016,20(9):128. http://link.springer.com/10.1007/s10404-016-1791-5

doi: 10.1007/s10404-016-1791-5     URL    
[105]
Liu C , Guo J , Tian F , Yang N , Yan F , Ding Y , Wei J , Hu G , Nie G , Sun J . ACS Nano, 2017,11(7):6968. https://pubs.acs.org/doi/10.1021/acsnano.7b02277

doi: 10.1021/acsnano.7b02277     URL    
[106]
Li Y , Zhang H , Li Y , Li X , Wu J , Qian S , Li F . Scientific Reports, 2018,8(1):3618. https://doi.org/10.1038/s41598-018-21827-7

doi: 10.1038/s41598-018-21827-7     URL    
[107]
Faridi M A , Ramachandraiah H , Banerjee I , Ardabili S , Zelenin S , Russom A . Journal of Nanobiotechnology, 2017,15(1):3. http://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0235-4

doi: 10.1186/s12951-016-0235-4     URL    
[108]
Ha B , Park J , Destgeer G , Jung J H , Sung H J . Analytical Chemistry, 2016,88(8):4205. https://pubs.acs.org/doi/10.1021/acs.analchem.6b00710

doi: 10.1021/acs.analchem.6b00710     URL    
[109]
Yuan D , Zhang J , Yan S , Peng G , Zhao Q , Alici G , Du H , Li W . Electrophoresis, 2016,37(15/16):2147. http://doi.wiley.com/10.1002/elps.201600102

doi: 10.1002/elps.201600102     URL    
[110]
Yuan D , Tan S H , Sluyter R , Zhao Q , Yan S , Nguyen N T , Guo J , Zhang J , Li W . Analytical Chemistry, 2017,89(17):9574. https://pubs.acs.org/doi/10.1021/acs.analchem.7b02671

doi: 10.1021/acs.analchem.7b02671     URL    
[111]
Tian F , Zhang W , Cai L , Li S , Hu G , Cong Y , Liu C , Li T , Sun J . Lab on a Chip, 2017,17(18):3078. http://xlink.rsc.org/?DOI=C7LC00671C

doi: 10.1039/C7LC00671C     URL    
[112]
Yang S , Lee S S , Ahn S W , Kang K , Shim W , Lee G , Hyun K , Kim J M . Soft Matter, 2012,8(18):5011. http://xlink.rsc.org/?DOI=c2sm07469a

doi: 10.1039/c2sm07469a     URL    
[113]
Ahn S W , Lee S S , Lee S J , Kim J M . Chemical Engineering Science, 2015,126:237. https://linkinghub.elsevier.com/retrieve/pii/S0009250914007337

doi: 10.1016/j.ces.2014.12.019     URL    
[114]
Li D , Lu X , Xuan X . Analytical Chemistry, 2016,88(24):12303. https://pubs.acs.org/doi/10.1021/acs.analchem.6b03501

doi: 10.1021/acs.analchem.6b03501     URL    
[115]
Lu X , Zhu L , Hua R , Xuan X . Applied Physics Letters, 2015,107(26):264102. http://aip.scitation.org/doi/10.1063/1.4939267

doi: 10.1063/1.4939267     URL    
[116]
Yuan D , Zhang J , Yan S , Pan C , Alici G , Nguyen N T , Li W H . Three-Dimensional Particle Focusing Under Viscoelastic Flow Based on Dean-Flow-Coupled Elasto-Inertial Effects. 2016,9903.
[117]
Yuan D , Zhang J , Sluyter R , Zhao Q , Yan S , Alici G , Li W . Lab on a Chip, 2016,16(20):3919. http://xlink.rsc.org/?DOI=C6LC00843G

doi: 10.1039/C6LC00843G     URL    
[118]
Nam J , Tan J K S , Khoo B L , Namgung B , Leo H L , Lim C T , Kim S . Biomicrofluidics, 2015,9(6):64117. http://aip.scitation.org/doi/10.1063/1.4938389

doi: 10.1063/1.4938389     URL    
[119]
Nam J , Namgung B , Lim C T , Bae J , Leo H L , Cho K S , Kim S . Journal of Chromatography A, 2015,1406:244. https://linkinghub.elsevier.com/retrieve/pii/S0021967315008766

doi: 10.1016/j.chroma.2015.06.029     URL    
[120]
Nam J , Shin Y , Tan J K , Lim Y B , Lim C T , Kim S . Lab on A Chip, 2016,16(11):2086. http://xlink.rsc.org/?DOI=C6LC00162A

doi: 10.1039/C6LC00162A     URL    
[121]
Ottino J M , Wiggins S . Philos. Trans. A Math. Phys. Eng. Sci., 2004,362(1818):923. https://royalsocietypublishing.org/doi/10.1098/rsta.2003.1355

doi: 10.1098/rsta.2003.1355     URL    
[122]
Ng T N , Chen X , Yeung K L . RSC Advances, 2015,5(18):13331. http://xlink.rsc.org/?DOI=C4RA16679E

doi: 10.1039/C4RA16679E     URL    
[123]
Lam Y C , Gan H Y , Nguyen N T , Lie H . Mixing Flow of Viscoelastic Fluids in a Microchannel. Springer Berlin Heidelberg. 2007.
[124]
Hong S O , Cooper-White J J , Kim J M . Applied Physics Letters, 2016,108(1):14103. http://aip.scitation.org/doi/10.1063/1.4939552

doi: 10.1063/1.4939552     URL    
[125]
Julius L A N , Jagannadh V K , Michael I J , Srinivasan R , Gorthi S S . BioChip Journal, 2016,10(1):16. http://link.springer.com/10.1007/s13206-016-0103-1

doi: 10.1007/s13206-016-0103-1     URL    
[126]
Cai W , Li Y , Zhang H , Li Y , Cheng J , Li X , Li F . International Journal of Heat and Fluid Flow, 2018,74:130. https://linkinghub.elsevier.com/retrieve/pii/S0142727X18303217

doi: 10.1016/j.ijheatfluidflow.2018.09.006     URL    
[127]
Cha S , Shin T , Lee S S , Shim W , Lee G , Lee S J , Kim Y , Kim J M . Analytical Chemistry, 2012,84(23):10471. http://dx.doi.org/10.1021/ac302763n

doi: 10.1021/ac302763n     URL    
[128]
Bae Y B , Jang H K , Shin T H , Phukan G , Tran T T , Lee G , Hwang W R , Kim J M . Lab on a Chip, 2016,16(1):96. http://xlink.rsc.org/?DOI=C5LC01006C

doi: 10.1039/C5LC01006C     URL    
[129]
Kim J , Kim J Y , Kim Y , Lee S J , Kim J M . Analytical Chemistry, 2017,89(17):8662. https://pubs.acs.org/doi/10.1021/acs.analchem.7b02559

doi: 10.1021/acs.analchem.7b02559     URL    
[130]
Hu S , Lam R H W . Microfluidics and Nanofluidics, 2017,21(4):68. http://link.springer.com/10.1007/s10404-017-1903-x

doi: 10.1007/s10404-017-1903-x     URL    
[131]
Raj M K , Chakraborty J , Dasgupta S , Chakraborty S . Biomicrofluidics, 2018,12(3):34116. http://aip.scitation.org/doi/10.1063/1.5036632

doi: 10.1063/1.5036632     URL    
[132]
Yang S H , Park J , Youn J R , Song Y S . Lab on a Chip, 2018,18:10.
[133]
Zou S , Yuan X F , Yang X , Wei Y , Xu X . Journal of Non-Newtonian Fluid Mechanics, 2014,211:99. http://dx.doi.org/10.1016/j.jnnfm.2014.07.003

doi: 10.1016/j.jnnfm.2014.07.003     URL    
[134]
Aharonov E , Rothman D H . Geophysical Research Letters, 1993,20(8):679. http://doi.wiley.com/10.1029/93GL00473

doi: 10.1029/93GL00473     URL    
[135]
Shi Y , Tang G H . Computers & Mathematics with Applications, 2014,68(10):1279.
[136]
Rosis A D . Advances in Water Resources, 2014,73:97. http://dx.doi.org/10.1016/j.advwatres.2014.07.004

doi: 10.1016/j.advwatres.2014.07.004     URL    
[137]
Wang C H , Ho J R . Computers & Mathematics with Applications, 2011,62(1):75.
[138]
Wang D , Bernsdorf J . Computers & Mathematics with Applications, 2009,58(5):1030.
[139]
Fu S C , Leung W W F , So R M C . Communications in Computational Physics, 2013,14(1):126. http://dx.doi.org/10.4208/cicp.171011.180712a

doi: 10.4208/cicp.171011.180712a     URL    
[140]
李勇(Yong L I), 柳文琴(Liu W Q) . 力学与实践 (Mechanics in Engineering), 2014,36(4):383. http://lxsj.cstam.org.cn/CN/abstract/abstract144888.shtml

doi: 10.6052/1000-0879-14-168     URL    
[141]
Bernsdorf J , Wang D . Computers & Mathematics with Applications, 2009,58(5):1024.
[142]
Hoogerbrugge P J , Koelman J M V A . Europhysics Letters, 1992,19(3):155. https://iopscience.iop.org/article/10.1209/0295-5075/19/3/001

doi: 10.1209/0295-5075/19/3/001     URL    
[143]
Duong-Hong D , Phan-Thien N , Yeo K S , Ausias G . Computer Methods in Applied Mechanics and Engineering, 2010,199(23/24):1593. https://linkinghub.elsevier.com/retrieve/pii/S0045782510000198

doi: 10.1016/j.cma.2010.01.010     URL    
[144]
许少锋(Xu S F), 汪久根(W J G) . 物理学报 (Acta Physica Sinica), 2013,62(12):319.
[145]
Lee Y K , Ahn K H . Journal of Non-Newtonian Fluid Mechanics, 2017,244:75. https://linkinghub.elsevier.com/retrieve/pii/S037702571730023X

doi: 10.1016/j.jnnfm.2017.04.007     URL    
[146]
Su J , Ma L , Ouyang J , Feng C . AIP Advances, 2017,7(11):115013. http://aip.scitation.org/doi/10.1063/1.5004612

doi: 10.1063/1.5004612     URL    
[147]
Villone M M , Greco F , Hulsen M A , Maffettone P L . Journal of Non-Newtonian Fluid Mechanics, 2016,234:105. https://linkinghub.elsevier.com/retrieve/pii/S0377025716300611

doi: 10.1016/j.jnnfm.2016.05.006     URL    
[148]
Decoene A , Martin S , Maury B . Journal of Non-Newtonian Fluid Mechanics, 2018,260:1. https://linkinghub.elsevier.com/retrieve/pii/S0377025717300940

doi: 10.1016/j.jnnfm.2018.06.006     URL    
[149]
Wang P , Yu Z , Lin J . Journal of Non-Newtonian Fluid Mechanics, 2018,262:142. https://linkinghub.elsevier.com/retrieve/pii/S0377025717305207

doi: 10.1016/j.jnnfm.2018.04.011     URL    
[1] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[2] 冯迪, 王广华, 唐文来, 杨继全. 微流控阻抗流式细胞仪在单细胞检测中的应用[J]. 化学进展, 2021, 33(4): 555-567.
[3] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[4] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[5] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[6] 李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5): 581-593.
[7] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[8] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[9] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[10] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[11] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[12] 黄笛, 项楠, 唐文来, 张鑫杰, 倪中华. 基于微流控技术的循环肿瘤细胞分选研究[J]. 化学进展, 2015, 27(7): 882-912.
[13] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[14] 唐文来, 项楠, 黄笛, 张鑫杰, 顾兴中, 倪中华. 基于微流控技术的单细胞生物物理特性表征[J]. 化学进展, 2014, 26(06): 1050-1064.
[15] 蒋艳, 马翠翠, 胡贤巧, 何巧红. 微流控纸芯片的加工技术及其应用[J]. 化学进展, 2014, 26(01): 167-177.