English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 536-547 DOI: 10.7536/PC190831 前一篇   后一篇

• 综述 •

金属基介孔固体碱催化剂的制备与应用

刘宁1, 刘水林1,**(), 伍素云1, 付琳2, 吴智1, 李来丙1,**()   

  1. 1.湖南工学院材料与化学工程学院 衡阳 421002
    2.湘潭大学化工学院 化工过程模拟与强化国家地方联合工程研究中心 湘潭 411105
  • 收稿日期:2019-08-29 修回日期:2020-01-15 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 刘水林, 李来丙
  • 基金资助:
    国家自然科学基金项目(51802093); 湖南省自然科学基金项目(2019JJ50107); 湖南省自然科学基金项目(2017JJ2063); 湖南省教育厅科学研究项目(18B465); 湖南工学院人才科研启动基金(HQ 17014); 湖南工学院人才科研启动基金(HQ 17011); 湖南省工程研究中心(湘发改委高技[2019]853号)()

Preparation and Application of Matal-Based Mesoporous Solid Bases

Ning Liu1, Shuilin Liu1,**(), Suyun Wu1, Lin Fu2, Zhi Wu1, Laibing Li1,**()   

  1. 1.Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
    2.National & Local United Engineering Research Center for Chemical Process Simulation and Intensification, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
  • Received:2019-08-29 Revised:2020-01-15 Online:2020-05-15 Published:2020-02-20
  • Contact: Shuilin Liu, Laibing Li
  • About author:
    ** e-mail: (Shuilin Liu);
    (Laibing Li)
  • Supported by:
    National Natural Science Foundation of China(51802093); Hunan Provincial Natural Science Foundation of China(2019JJ50107); Hunan Provincial Natural Science Foundation of China(2017JJ2063); Foundation of Hunan Educational Committee(18B465); Talent Scientific Research Fund of Hunan Institute of Technology(HQ 17014); Talent Scientific Research Fund of Hunan Institute of Technology(HQ 17011); Engineering Research Center in Hunan Province(Grants No.[2019]853)()

应可持续发展与绿色化学的需要,非均相催化剂替代传统的均相催化剂引起研究者的广泛重视。其中,金属基介孔固体碱具有比表面积大、腐蚀性小、传质速率快、易分离等优点,是一种理想的绿色催化剂。本文综述了近年来制备不同的金属基介孔固体碱(包括MgO、类水滑石(HTs)及改性的Al2O3、ZrO2、CeO2)的研究进展,重点讨论了软模板法、硬模板法、溶剂挥发自组装法、无模板剂法等制备各种金属基介孔固体碱的方法和机理。此外,还介绍了金属基介孔氧化物在催化、储能与环境领域中的实际应用。最后,简要分析了金属基介孔固体碱制备过程中存在的问题,并展望其在未来的发展趋势,为新型金属基介孔固体碱的构筑提供了新的思路。

For the demands of sustainable development and green chemistry, the use of heterogeneous catalysts instead of conventional homogeneous ones has received increasing attention. Among various heterogeneous catalysts, mesoporous solid bases are extremely desirable in green catalytic processes, due to their advantages of high specific surface, negligible corrosion, accelerated mass transport and easy separation. Great progress has been made in mesoporous solid bases in the last decade. In addition to their wide applications in the catalytic synthesis of organics and fine chemicals, mesoporous solid bases have also been used in the field of energy and environmental catalysis. In this review, we provide an overview of recent research progress in the preparation and application of metal-based mesoporous solid bases(including MgO,hydrotalcite-like compounds, modified-Al2O3,modified-ZrO2, and modified-CeO2), which is basically grouped by the metal type and illustrated with typical examples. The advantage, disadvantages and mechanisms for four main synthesis methods, including soft-template method, hard-template method, solvent evaporation-induced self-assembly(EISA) synthesis and solvent-free synthesis are discussed and compared in detail. Moreover, their applications in the fields of catalysis, energy storage and environment are briefly introduced as well. Finally, the existing problems of the preparing metal-based mesoporous oxides are briefly discussed, and the strategies are provided for the construction of novel metal-based mesoporous solid bases.

Contents

1 Introduction

2 Preparation and application of matal-based mesoporous oxides

2.1 Mesoporous MgO

2.2 Mesoporous hydrotalcite-like

2.3 Mesoporous modified-Al2O3

2.4 Mesoporous modified-ZrO2

2.5 Mesoporous modified-CeO2

2.6 Others

3 Conclusion and outlook

()
图1 利用PDMS-PEO共聚物模板剂合成介孔MgO示意图[11]
Fig. 1 Schematic illustration of the synthesis of mesoporous MgO using PDMS-PEO copolymer as a template[11]
图2 (1)蜂巢(a, b)[11]、(2)蠕虫微孔(c, d)[12]、(3)多层(e, f)[26]与(4)纳米线(g, h)[29]状介孔MgO的SEM与TEM图
Fig. 2 The TEM and SEM images of mesoporous MgO with different structure:(a)honeycomb[11];(2)wormhole-like micropores(3)hierarchical microspheres;(4)nanowire[11,12,26,29]
表1 不同方法制备的介孔MgO的有关性能
Table 1 The properties of the reported mesoporous MgO using different synthetic methods
图3 不同焙烧温度下合成Zn-Al样品的SEM图[31]
Fig. 3 The SEM images of Zn-Al hydrotalcites at different calcination temperature[31]
图4 金属氧化物修饰的介孔γ- Al2O3的制备[55]
Fig. 4 The synthesis of mesoporous γ-Al2O3 functionalized with metal oxides[55]
图5 通过硬模板法合成介孔Na修饰的ZrO2[63]
Fig. 5 The synthesis of Na-modified mesoporous ZrO2 in a hard template process[63]
图6 合成多级空隙CeO2形成过程示意图(a)、N2吸附-脱附曲线(b)、SEM(c,d)与TEM(e)图[79]
Fig. 6 Schematic illustration of synthesis process(a), N2 adsorption-desorption curves(b), SEM(c), (d)TEM, and (e) images of multi-scale porous CeO2[79]
图7 介孔CeO2合成示意图[80]
Fig. 7 Schematic illustration for the synthesis of mesoporous CeO2[80]
[1]
Souzanchi S, Nazari L, Rao K T V, Yuan Z, Tan Z, Xu C C. Catal. Today, 2019,319:76. https://linkinghub.elsevier.com/retrieve/pii/S0920586118303250

doi: 10.1016/j.cattod.2018.03.056     URL    
[2]
Sun L B, Liu X Q, Zhou H C. Chem. Soc. Rev., 2015,44(15):5092. http://xlink.rsc.org/?DOI=C5CS00090D

doi: 10.1039/C5CS00090D     URL    
[3]
Marwaha A, Dhir A, Mahla S K, Mohapatra S K. Catal. Rev., 2018,60(4):594. https://www.tandfonline.com/doi/full/10.1080/01614940.2018.1494782

doi: 10.1080/01614940.2018.1494782     URL    
[4]
Wu W B, Li Y, Li H, Zhao W F, Yang S. Catalysts, 2018,8(7):264. http://www.mdpi.com/2073-4344/8/7/264

doi: 10.3390/catal8070264     URL    
[5]
Bing W H, Wei M. J. Solid State Chem., 2019,269:184. https://linkinghub.elsevier.com/retrieve/pii/S0022459618304109

doi: 10.1016/j.jssc.2018.09.023     URL    
[6]
Yang X, Yu I K, Cho D W, Chen S S, Tsang D C W, Shang J, Yip A C K, Wang L, Ok Y S. ACS Sustain. Chem. Eng., 2019,7(5):4851. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b05311

doi: 10.1021/acssuschemeng.8b05311     URL    
[7]
Qi X X, Yan X R, Peng W C, Zhang J S, Tong Y B, Li J, Sun D K, Hui G, Zhang J L. New J. Chem., 2019,43(12):4698. http://xlink.rsc.org/?DOI=C8NJ05643A

doi: 10.1039/C8NJ05643A     URL    
[8]
Ghalandari A, Taghizadeh M, Rahmani M. Chem. Eng. Technol., 2019,42(1):89. http://doi.wiley.com/10.1002/ceat.v42.1

doi: 10.1002/ceat.v42.1     URL    
[9]
Díez V K, Ferretti C A, Torresi P A, Apesteguía C R, Di Cosimo J I. Catal. Today, 2011,173(1):21. https://linkinghub.elsevier.com/retrieve/pii/S0920586111002264

doi: 10.1016/j.cattod.2011.02.060     URL    
[10]
Schwach P, Hamilton N, Eichelbaum M, Thum L, Lunkenbein T, Schlögl R, Trunschke A. J. Catal., 2015,329:574. https://linkinghub.elsevier.com/retrieve/pii/S0021951715001463

doi: 10.1016/j.jcat.2015.05.008     URL    
[11]
Jeon H, Kim D J, Kim S J, Kim J H. Fuel Process. Technol., 2013,116:325. http://dx.doi.org/10.1016/j.fuproc2013.07.013

doi: 10.1016/j.fuproc2013.07.013     URL    
[12]
Wang G Z, Zhang L, Dai H X, Deng J Q, Liu C X, He H, Au C T. Inorg. Chem., 2008,47(10):4015. https://pubs.acs.org/doi/10.1021/ic7015462

doi: 10.1021/ic7015462     URL    
[13]
Gao W L, Zhou T T, Louis B, Wang Q. Catalysts, 2017,7(4):116. http://www.mdpi.com/2073-4344/7/4/116

doi: 10.3390/catal7040116     URL    
[14]
Sharma J, Sharma M, Basu S. J. Environ. Chem. Eng., 2017,5(4):3429. https://linkinghub.elsevier.com/retrieve/pii/S2213343717303196

doi: 10.1016/j.jece.2017.07.015     URL    
[15]
Wu Y J, Bose S. Langmuir, 2005,21(8):3232. https://pubs.acs.org/doi/10.1021/la046754z

doi: 10.1021/la046754z     URL    
[16]
Xu C H, Yuan K K, Jin X T, Yu Z C, Zheng L, Lü Y D, Wang X Q, Zhu L Y, Zhang G H, Xu D. Ceram. Int., 2017,43(18):16210. https://linkinghub.elsevier.com/retrieve/pii/S0272884217318722

doi: 10.1016/j.ceramint.2017.08.199     URL    
[17]
Li W C, Lu A H, Weidenthaler C, Schüth F. Chem. Mater., 2004,16(26):5676. https://pubs.acs.org/doi/10.1021/cm048759n

doi: 10.1021/cm048759n     URL    
[18]
Najafi A. Ceram. Int., 2017,43(7):5813. https://linkinghub.elsevier.com/retrieve/pii/S027288421730158X

doi: 10.1016/j.ceramint.2017.01.135     URL    
[19]
Roggenbuck J, Koch G, Tiemann M. Chem. Mater., 2006,18(17):4151. https://pubs.acs.org/doi/10.1021/cm060740s

doi: 10.1021/cm060740s     URL    
[20]
Roggenbuck J, Tiemann M. J. Am. Chem. Soc., 2005,127(4):1096. https://pubs.acs.org/doi/10.1021/ja043605u

doi: 10.1021/ja043605u     URL    
[21]
Sun R Q, Sun L B, Chun Y, Xu Q H, Wu H. Micropor. Mesopor. Mat., 2008,111(1):314. https://linkinghub.elsevier.com/retrieve/pii/S1387181107004660

doi: 10.1016/j.micromeso.2007.08.006     URL    
[22]
Bian S W, Baltrusaitis J, Galhotra P, Grassian V H. J. Mater. Chem., 2010,20(39):8705. http://xlink.rsc.org/?DOI=c0jm01261k

doi: 10.1039/c0jm01261k     URL    
[23]
Ling Z X, Zheng M B, Du Q L, Wang Y W, Song J K, Dai W J, Zhang L F, Ji G B, Cao J M. Solid State Sci., 2011,13(12):2073. http://www.sciencedirect.com/science/article/pii/S1293255810000166

doi: 10.1016/j.solidstatesciences.2010.01.013     URL    
[24]
Veldurthi S, Shin C H, Joo O S, Jung, K D. Miropor. Mesopor. Mat., 2012,152:31.
[25]
Zhao X, Ji G Z, Liu W, He X, Anthony E J, Zhao M. Chem. Eng. J., 2018,332:216. https://linkinghub.elsevier.com/retrieve/pii/S138589471731567X

doi: 10.1016/j.cej.2017.09.068     URL    
[26]
Purwajanti S, Zhou L, Ahmad N Y, Zhang J, Zhang H W, Huang X D, Yu C Z. ACS Appl. Mater. Interf., 2015,7(38):21278. https://pubs.acs.org/doi/10.1021/acsami.5b05553

doi: 10.1021/acsami.5b05553     URL    
[27]
Chen L M, Sun X M, Liu Y N, Li Y D. Appl. Catal. A: Gen., 2004,265(1):123. https://linkinghub.elsevier.com/retrieve/pii/S0926860X04000511

doi: 10.1016/j.apcata.2004.01.008     URL    
[28]
Takenaka S, Sato S, Takahashi R, Sodesawa T. Phys. Chem. Chem. Phys., 2003,5(21):4968. http://xlink.rsc.org/?DOI=B307144H

doi: 10.1039/B307144H     URL    
[29]
Yu Z C, Xu C H, Yuan K K, Gan X Z, Zhou H F, Wang X Q, Zhu L Y, Zhang G H, Xu D. Ceram. Int., 2018,44(8):9454. https://linkinghub.elsevier.com/retrieve/pii/S0272884218304735

doi: 10.1016/j.ceramint.2018.02.162     URL    
[30]
Calderón F, Fernández R, Sánchez F, Fernández-Mayoralas A. Adv. Synth. Catal., 2005,347(10):1395. http://doi.wiley.com/10.1002/%28ISSN%291615-4169

doi: 10.1002/(ISSN)1615-4169     URL    
[31]
Kocík J, Frolich K, Perková I, Horáíek J. J. Chem. Technol. Biotechnol., 2019,94(2):435.
[32]
Liu Q H, Wang B C, Wang C X, Tian Z J, Qu W, Ma H J, Xu R H. Green Chem., 2014,16(5):2604. http://dx.doi.org/10.1039/c3gc42648c

doi: 10.1039/c3gc42648c     URL    
[33]
Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M. Micropor. Mesopor. Mat., 2010,128(1):41. https://linkinghub.elsevier.com/retrieve/pii/S1387181109003667

doi: 10.1016/j.micromeso.2009.08.001     URL    
[34]
Paul M, Pal N, Mondal J, Bhaumik A. Chem. Eng. Sci., 2012,71:564. https://linkinghub.elsevier.com/retrieve/pii/S0009250911008372

doi: 10.1016/j.ces.2011.11.038     URL    
[35]
Oka Y, Kuroda Y, Matsuno T, Kamata K, Wada H, Shimojima A, Kuroda K. Chem-A Eur. J., 2017,23(39):9362. http://doi.wiley.com/10.1002/chem.v23.39

doi: 10.1002/chem.v23.39     URL    
[36]
Kuroda Y, Yamaguchi K, Kuroda K, Mizuno N B. Chem. Soc. JPN., 2015,88(12):1765. http://www.journal.csj.jp/doi/10.1246/bcsj.20150271

doi: 10.1246/bcsj.20150271     URL    
[37]
Wang D F, Zhang X L, Ma J, Yu H W, Shen J Z, Wei W. Catal. Sci. Technol., 2016,6(5):1530. http://xlink.rsc.org/?DOI=C5CY01712B

doi: 10.1039/C5CY01712B     URL    
[38]
Nowicki J, Lach J, Organek M, Sabura E. Appl. Catal. A: Gen., 2016,524:17. https://linkinghub.elsevier.com/retrieve/pii/S0926860X16302630

doi: 10.1016/j.apcata.2016.05.015     URL    
[39]
Rastegarpanah A, Rezaei M, Meshkani F, Dai H, Arandiyan H. Int. J. Hydrogen Energ., 2018,43(32):15112. https://linkinghub.elsevier.com/retrieve/pii/S036031991831869X

doi: 10.1016/j.ijhydene.2018.06.057     URL    
[40]
Wang Z, Fongarland P, Lu G, Essayem N. J. Catal., 2014,318:108. https://linkinghub.elsevier.com/retrieve/pii/S002195171400195X

doi: 10.1016/j.jcat.2014.07.006     URL    
[41]
Tao G, Hua Z L, Gao Z, Chen Y, Wang L J, He Q J, Chen H R, Shi J L. RSC Adv., 2012,2(32):12337. http://xlink.rsc.org/?DOI=c2ra22218c

doi: 10.1039/c2ra22218c     URL    
[42]
Gao L J, Teng G Y, Lv J H, Xiao G M. Energ. Fuel., 2009,24(1):646. https://pubs.acs.org/doi/10.1021/ef900800d

doi: 10.1021/ef900800d     URL    
[43]
Sun C J, Qiu F X, Yang D Y, Ye B. Fuel Process. Technol., 2014,126:383. http://dx.doi.org/10.1016/j.fuproc.2014.05.021

doi: 10.1016/j.fuproc.2014.05.021     URL    
[44]
Sun G, Li Y, Cai Z Z, Teng Y L, Wang Y, Reaney M. J. Appl. Catal. B: Environ., 2017,209:118. https://linkinghub.elsevier.com/retrieve/pii/S092633731730190X

doi: 10.1016/j.apcatb.2017.02.078     URL    
[45]
Zhang X L, Wang D F, Ma J, Wei W. Catal. Lett., 2017,147(5):1181. http://link.springer.com/10.1007/s10562-017-2013-9

doi: 10.1007/s10562-017-2013-9     URL    
[46]
Wu W, Wan Z J, Zhu M M, Zhang D K. Micropor. Mesopor. Mat., 2016,223:203. https://linkinghub.elsevier.com/retrieve/pii/S1387181115006034

doi: 10.1016/j.micromeso.2015.11.004     URL    
[47]
Wei J, Ren Y, Luo W, Sun Z K, Cheng X W, Li Y H, Deng Y H, Elzatahry A, Al-Dahyan D, Zhao D. Chem. Mater., 2017,29(5):2211. https://pubs.acs.org/doi/10.1021/acs.chemmater.6b05032

doi: 10.1021/acs.chemmater.6b05032     URL    
[48]
Vosoughi V, Badoga S, Dalai A K, Abatzoglou N. Fuel process. Technol., 2017,162:55. https://linkinghub.elsevier.com/retrieve/pii/S0378382016311778

doi: 10.1016/j.fuproc.2017.03.029     URL    
[49]
Zhang Y, Zhou K D, Zhang L F, Wu H D, Guo J. Fuel, 2019,253:431. https://linkinghub.elsevier.com/retrieve/pii/S0016236119307665

doi: 10.1016/j.fuel.2019.05.021     URL    
[50]
Zhen M A, Zhou B, Ren Y. Front. Env. Sci. Eng., 2013,7(3):341. http://link.springer.com/10.1007/s11783-012-0472-1

doi: 10.1007/s11783-012-0472-1     URL    
[51]
Nevanperä T K, Ojala S, Laitinen T, Pitkäaho S, Saukko S, Keiski R L. Catalysts, 2019,9(7):603. https://www.mdpi.com/2073-4344/9/7/603

doi: 10.3390/catal9070603     URL    
[52]
Byun M Y, Kim J S, Park D W, Lee M S. J. Nanosci. Nanotechno., 2018,18(9):6283. http://www.ingentaconnect.com/content/10.1166/jnn.2018.15643

doi: 10.1166/jnn.2018.15643     URL    
[53]
Rascón F, Wischert R, Copéret C. Chem. Sci., 2011,2(8):1449. http://dx.doi.org/10.1039/c1sc00073j

doi: 10.1039/c1sc00073j     URL    
[54]
Sun L B, Yang J, Kou J H, Gu, F N, Chun Y, Wang Y, Zhu J, Zou Z G. Angew. Chem. Int. Edit., 2008,47(18):3418. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773     URL    
[55]
Sun L B, Tian W H, Liu X Q. J. Phys. Chem. C, 2009,113(44):19172. https://pubs.acs.org/doi/10.1021/jp907224f

doi: 10.1021/jp907224f     URL    
[56]
Liu Y Y, Qin G H, Song X Y, Ding J W, Liu F S, Yu S T, Ge X. P. J. Taiwan Inst. Chem. Eng., 2018,86:222. https://linkinghub.elsevier.com/retrieve/pii/S1876107018301147

doi: 10.1016/j.jtice.2018.02.028     URL    
[57]
Zheng X, Fan W, Kong W, Wang Y, Qi C. Kinet. Catal., 2014,55(5):592. http://link.springer.com/10.1134/S002315841405005X

doi: 10.1134/S002315841405005X     URL    
[58]
Murugan C, Bajaj H C, Jasra R V. Catal. Lett., 2010,137(3/4):224. http://link.springer.com/10.1007/s10562-010-0348-6

doi: 10.1007/s10562-010-0348-6     URL    
[59]
Koo H M, Ahn C I, Lee D H, Roh H S, Shin C H, Kye H, Bae J W. Fuel, 2018,225:460. https://linkinghub.elsevier.com/retrieve/pii/S0016236118305933

doi: 10.1016/j.fuel.2018.03.175     URL    
[60]
Hu F, Zhang D, Wang F, Li R X, Zhang S Q, Wu X. Sci. Adv. Mater., 2016,8(6):1242. http://www.ingentaconnect.com/content/10.1166/sam.2016.2734

doi: 10.1166/sam.2016.2734     URL    
[61]
Miao Z C, Li Z B, Suo C, Zhao J P, Si W J, Zhou J, Zhuo S P. Adv. Powder Technol., 2018,29(12):3569. https://linkinghub.elsevier.com/retrieve/pii/S0921883118306307

doi: 10.1016/j.apt.2018.09.041     URL    
[62]
Wang H G, Yu F, Su J J, Shi G L, Pan D H, Li R F. Ceram. Int., 2017,43(9):7033. https://linkinghub.elsevier.com/retrieve/pii/S027288421730336X

doi: 10.1016/j.ceramint.2017.02.131     URL    
[63]
Gong L, Sun L B, Sun Y H, Li T T, Liu X Q. J. Phys. Chem. C, 2011,115(23):11633. https://pubs.acs.org/doi/10.1021/jp2021165

doi: 10.1021/jp2021165     URL    
[64]
Ding Y Q, Sun H, Duan J Z, Chen P, Lou H, Zheng X M. Catal. Commun., 2011,12(7):606. https://linkinghub.elsevier.com/retrieve/pii/S1566736710004048

doi: 10.1016/j.catcom.2010.12.019     URL    
[65]
Liu S G, Huang S Y, Guan L X, Li J P, Zhao N, Wei W, Sun Y H. Micropor. Mesopor. Mat., 2007,102(1):304. https://linkinghub.elsevier.com/retrieve/pii/S138718110700008X

doi: 10.1016/j.micromeso.2006.12.052     URL    
[66]
Tian X K, Xiao T, Yang C, Zhou Z X, Ke H Z. Mater. Chem. Phys., 2010,124(1):744. https://linkinghub.elsevier.com/retrieve/pii/S0254058410005973

doi: 10.1016/j.matchemphys.2010.07.050     URL    
[67]
Eom H J, Kim M S, Lee D W, Hong Y K, Jeong G, Lee K Y. Appl. Catal. A: Gen, 2015,493:149. https://linkinghub.elsevier.com/retrieve/pii/S0926860X15000034

doi: 10.1016/j.apcata.2014.12.052     URL    
[68]
Liu S G, Ma J, Guan L X, Li J P, Wei W, Sun Y H. Micropor. Mesopor. Mat., 2009,117(1):466. https://linkinghub.elsevier.com/retrieve/pii/S1387181108003624

doi: 10.1016/j.micromeso.2008.07.026     URL    
[69]
Zhang X L, Wang D F, Wu G D, Wang X L, Jiang X X, Liu S F, Zhou D G, Xu D M, Gao J. Appl. Catal. A: Gen, 2018,555:130. https://linkinghub.elsevier.com/retrieve/pii/S0926860X18300711

doi: 10.1016/j.apcata.2018.02.013     URL    
[70]
Liu S G, Zhang X L, Li J P, Zhao N, Wei W, Sun Y H. Catal. Commun., 2008,9(7):1527. https://linkinghub.elsevier.com/retrieve/pii/S1566736707005353

doi: 10.1016/j.catcom.2007.12.007     URL    
[71]
Mishra B G, Rao G R. J. Mol. Catal. A: Chem., 2006,243(2):204. https://linkinghub.elsevier.com/retrieve/pii/S1381116905005510

doi: 10.1016/j.molcata.2005.07.048     URL    
[72]
Wu Z, Mann A K P, Li M J, Overbury S H. J. Phys. Chem. C, 2015,119(13):7340. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b00859

doi: 10.1021/acs.jpcc.5b00859     URL    
[73]
Xu J, Long K Z, Wu F, Xu B, Li Y X, Cao Y. Appl. Catal. A: Gen, 2014,484:1. https://linkinghub.elsevier.com/retrieve/pii/S0926860X14004281

doi: 10.1016/j.apcata.2014.07.009     URL    
[74]
Laha S C, Ryoo R. Chem. Commun., 2003(17):2138.
[75]
Qu Z P, Yu F L, Zhang X D, Wang Y, Gao J S. Chem. Eng. J., 2013,229:522. https://linkinghub.elsevier.com/retrieve/pii/S1385894713008346

doi: 10.1016/j.cej.2013.06.061     URL    
[76]
Ji P F, Zhang J L, Chen F, Anpo M. J. Phys. Chem. C, 2008,112(46):17809. https://pubs.acs.org/doi/10.1021/jp8054087

doi: 10.1021/jp8054087     URL    
[77]
Perkas N, Rotter H, Vradman L, Landau M V, Gedanken A. Langmuir, 2006,22(16):7072. https://pubs.acs.org/doi/10.1021/la0600907

doi: 10.1021/la0600907     URL    
[78]
Li T T, Sun L B, Gong L, Liu X Y, Liu X Q. J. Mol. Catal. A: Chem., 2012,352:38. https://linkinghub.elsevier.com/retrieve/pii/S1381116911003979

doi: 10.1016/j.molcata.2011.09.030     URL    
[79]
Ouyang J, Li X Y, Jin J, Yang H M, Tang A D. J. Alloy. Compd., 2014,606:236. https://linkinghub.elsevier.com/retrieve/pii/S0925838814008615

doi: 10.1016/j.jallcom.2014.04.048     URL    
[80]
Xu Y H, Li R X. RSC Adv., 2015,5(56):44828. http://xlink.rsc.org/?DOI=C5RA03274A

doi: 10.1039/C5RA03274A     URL    
[81]
Li G, Zhang C, Wang Z, Huang H, Peng H, Li X. Appl. Catal. A: Gen., 2018,550:67. https://linkinghub.elsevier.com/retrieve/pii/S0926860X17305240

doi: 10.1016/j.apcata.2017.11.003     URL    
[82]
Romo J E, Bollar N V, Zimmermann C J, Wettstein S G. ChemCatChem, 2018,10(21):4805. https://onlinelibrary.wiley.com/toc/18673899/10/21

doi: 10.1002/cctc.v10.21     URL    
[83]
Ikram M, Liu Y, Lv H, Liu L, Rehman A U, Kan K, Zhang W, He L, Wang Y, Wang R, Shi K. Appl Surf. Sci., 2019,466:1. https://linkinghub.elsevier.com/retrieve/pii/S0169433218327144

doi: 10.1016/j.apsusc.2018.10.018     URL    
[84]
Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D. Adv. Funct. Mater., 2018,28(6):1705268. https://onlinelibrary.wiley.com/toc/16163028/28/6

doi: 10.1002/adfm.v28.6     URL    
[85]
He G, Zhang J, Hu Y, Bai Z, Wei C. Appl. Catal. B: Environ., 2019,250:301. https://linkinghub.elsevier.com/retrieve/pii/S0926337319302437

doi: 10.1016/j.apcatb.2019.03.027     URL    
[86]
Soltani S, Rashid U, Roodbar T, Nehdi I A, Ibrahim M. Chem. Eng. Commun., 2019,206(1):33. https://www.tandfonline.com/doi/full/10.1080/00986445.2018.1471399

doi: 10.1080/00986445.2018.1471399     URL    
[87]
Bai B, Qiao Q, Li Y, Peng Y, Li J. Chinese J. Catal., 2018,39(4):630. https://linkinghub.elsevier.com/retrieve/pii/S1872206718630360

doi: 10.1016/S1872-2067(18)63036-0     URL    
[88]
Dutt M, Kaushik A, Tomar M, Gupta V, Singh V. J. Porous Mat., 2019,1.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[3] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[4] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[5] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[6] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[7] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[8] 何天稀, 王文斌, 王九, 陈波水, 梁琼麟. 介孔碳球的制备及作为药物传输系统的应用[J]. 化学进展, 2020, 32(2/3): 309-319.
[9] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[10] 赵剑曦, 顾攀攀, 曾慧, 邓生禄. 表面活性剂在非极性有机溶剂中的自组装[J]. 化学进展, 2019, 31(5): 643-653.
[11] 冯盛, 杨芳, 刘梦瑶, 范红显, 徐念. 抗癌药物多烯紫杉醇载体[J]. 化学进展, 2019, 31(2/3): 368-380.
[12] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[13] 余响林, 陈小姣, 张碧玉, 饶聪, 何源, 黎俊波. 基于有序介孔材料的荧光探针及其应用[J]. 化学进展, 2016, 28(6): 896-907.
[14] 张凌峰, 胡忠攀, 高泽敏, 刘亚录, 袁忠勇. 有序介孔碳基金属复合材料的制备及催化应用[J]. 化学进展, 2015, 27(8): 1042-1056.
[15] 赵剑曦. 表面活性剂在非极性有机溶剂中的复杂反相聚集体[J]. 化学进展, 2015, 27(2/3): 168-173.