English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 642-655 DOI: 10.7536/PC190828 前一篇   后一篇

• 综述 •

二维MoS2纳米材料及其复合物在水处理中的应用

刘阳1, 张新波1, 赵樱灿2,3,**()   

  1. 1.天津城建大学环境与市政工程学院 基础设施防护和环境绿色生物科技国际联合研究中心 天津 300384
    2.南方科技大学生物医学工程系 深圳 518055
    3.清华大学深圳研究生院 深圳 518055
  • 收稿日期:2019-08-26 修回日期:2019-12-09 出版日期:2020-05-15 发布日期:2020-01-10
  • 通讯作者: 赵樱灿
  • 基金资助:
    广东省自然科学基金项目(2018A030313984); 深圳市科技创新委员会基础研究项目(JCYJ20170818093844118); 深圳市科技创新委员会基础研究项目(JCYJ20190809151215588); 天津市水质科学与技术重点实验室开发基金项目(TJKLAST-PT-2018-5)

Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment

Yang Liu1, Xinbo Zhang1, Yingcan Zhao2,3,**()   

  1. 1.School of Environmental and Municipal Engineering, Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384,China
    2.Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    3.Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
  • Received:2019-08-26 Revised:2019-12-09 Online:2020-05-15 Published:2020-01-10
  • Contact: Yingcan Zhao
  • About author:
  • Supported by:
    Guangdong Provincial Natural Science Foundation of China(2018A030313984); Shenzhen Municipal Science and Technology Innovation Council of Shenzhen Government(JCYJ20170818093844118); Shenzhen Municipal Science and Technology Innovation Council of Shenzhen Government(JCYJ20190809151215588); Tianjin Key Laboratory of Aquatic Science and Technology(TJKLAST-PT-2018-5)

纳米材料和纳米技术的快速发展为水处理及资源化技术的开发带来了全新的发展机遇,作为一种典型的类石墨烯结构的二硫化钼以其层状结构和独特的物理化学性能在众多纳米材料中受到重点关注。本文梳理和归纳了二维二硫化钼纳米材料及其复合物在水处理中吸附、膜分离、催化、抗菌和检测等方面的应用,重点介绍了其在吸附和膜分离方面的研究进展,以实现对水中各种离子、染料、抗生素、致病菌等多种环境污染物的高效去除。最后,对二硫化钼及其复合物在水处理中的应用作出了评价,探讨其未来发展方向以及面临的挑战,以期为解决水环境污染和水资源紧缺等问题提供一种新型的材料和技术手段。

The rapid development of nanomaterials and nanotechnology provides the water treatment new opportunities. MoS2, as a graphene-like two dimensional(2D) nanomaterial, has attracted much attention due to its unique 2D sheet structure as well as physical and chemical properties. In this paper, we review the applications of 2D MoS2 and its composites on adsorption, membrane separation, catalysis, antibacterial, and detection applications in water treatment area, of which adsorption and membrane separation are highlighted and discussed to achieve the goal of high removal efficiency of ions, dyes, antibiotics, bacteria and many other environmental pollutants. In the end, the applications of MoS2 and its composites in water treatment are evaluated, and their potential development and faced challenges are discussepd, hopefully to be a novel nanomaterial and technical strategy to solve water environmental pollution and water resource shortage problems.

Contents

1 Introduction

2 Preparation of two-dimensional MoS2 nanomaterials

3 MoS2-based adsorbents in water treatment

3.1 Removal of heavy metal ions

3.2 Removal of organic dyes

3.3 Removal of other pollutants

4 MoS2-based membranes in water treatment

4.1 Nanoporous MoS2 membranes

4.2 Layer-stacked MoS2 membranes

4.3 Membranes modified with MoS2 nanosheets

5 MoS2-based nanomaterials on catalytic degradation in water treatment

6 MoS2-based antibacterial nanomaterials in water treatment

7 MoS2-based nanomaterials on detection in water treatment

8 Conclusion and outlook

()
图1 MoS2结构示意图[4] (a)立体结构图;(b)2H相;(c)1T相
Fig. 1 Structure of MoS2[4] (a) 3D illustration;(b) the 2H phase;(c) the 1T phase. Copyright 2017, ACS
图2 模拟模块及不同孔径结构展示[76] (a)由一层MoS2片层(Mo为蓝色,S为黄色),水(透明蓝色),离子(红色和绿色)以及一层石墨烯片层(灰色)组成的模拟模块示意图;(b)左侧:Mo孔型, 右侧:S孔型,底部:Mo、S混合孔型
Fig. 2 Simulation box and different pore architectures[76]. (a) Schematic of the simulation box consisting of a MoS2 sheet(molybdenum in blue and sulfur in yellow), water(transparent blue), ions(in red and green) and a graphene sheet(in gray).(b) Left: Moonly pore type. Right: S only pore type. Bottom: mixed pore type. Copyright 2015, Springer Nature
图3 MoS2膜对离子和有机染料的分离性能和机理[12] 。 (a)500 nm厚的MoS2膜过滤水和盐溶液的水通量(20和200 mM NaCl);(b)溶质带电性和溶液离子强度对截留离子的影响;(c)滤液、进料液以及截留的浓缩液中有机染料(罗丹明WT)浓度的浓度(吸收光谱检测获得);通过与进料液的对比,内部光谱图像显示了接近无色的滤液以及截留的浓缩液;(d)有机染料截留率对MoS2膜厚度的依赖性;(e)MoS2膜分离性能的机理示意图,包括物理尺寸排阻及静电排斥
Fig. 3 Performance and mechanism of MoS2 membranes in rejection of ionic species and organic dyes[12]. (a) The steady water permeance of a 500 nm thick MoS2 membrane in filtering water and salt solutions(20 and 200 mM NaCl);(b) Effects of solute charge and ionic strength of solutions on the rejection of ionic species;(c) The concentrations of organic dye(rhodamine-WT) in permeate, feed, and retentate, as evidenced by the absorption spectra. The inset optical image shows the nearly colorless permeate and concentrated retentate, as compared to the feed solution;(d) Dependency of organic dye rejection on MoS2 membrane thickness;(e) The proposed mechanisms of MoS2 membranes include both size exclusion and electrostatic repulsion. Copyright 2017, ACS
表1 层状堆积MoS2膜分离性能
Table 1 The separation performance of layer-stacked MoS2 membranes
图4 FLV-MoS2在水体中可见光催化产生ROS进行杀菌作用示意图[15]
Fig. 4 Schematic that shows the FLV-MoS2 inactivating bacteria in water through visible-light photocatalytic ROS generation[15]
[1]
Richard Connor. Nature-based Solutions for Water, [2018-03-19]. . https://www.unwater.org/publications/world-water-development-report-2018/
[2]
Geim A K, Novoselov K S. Nat. Mater., 2007,6:183. https://doi.org/10.1038/nmat1849

doi: 10.1038/nmat1849     URL    
[3]
Perreault F, Faria A F, Elimelech M. Chem. Soc. Rev., 2015,44(16):5861. http://xlink.rsc.org/?DOI=C5CS00021A

doi: 10.1039/C5CS00021A     URL    
[4]
Wang Z, Mi B. Environ. Sci. Technol., 2017,51(15):8229. https://pubs.acs.org/doi/10.1021/acs.est.7b01466

doi: 10.1021/acs.est.7b01466     URL    
[5]
Deng M, Kwac K, Li M, Jung Y, Park H G. Nano Lett., 2017,17(4):2342. https://pubs.acs.org/doi/10.1021/acs.nanolett.6b05238

doi: 10.1021/acs.nanolett.6b05238     URL    
[6]
Sun L, Huang H, Peng X. Chem. Commun., 2013,49(91):10718. http://xlink.rsc.org/?DOI=c3cc46136j

doi: 10.1039/c3cc46136j     URL    
[7]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011,6(3):147. https://doi.org/10.1038/nnano.2010.279

doi: 10.1038/nnano.2010.279     URL    
[8]
Ataca C, Şahin H, Ciraci S. J. Phys. Chem. C, 2012,116(16):8983. https://pubs.acs.org/doi/10.1021/jp212558p

doi: 10.1021/jp212558p     URL    
[9]
宋晓琳(Song, X L), 陈贵锋(Chen G F), 关丽秀(Guan L X), 任慧(Ren H), 陈士强(Chen S Q), . 中国材料进展 (Materials China), 2017,36(12):929.
[10]
Tang Q, Jiang D E. Chem. Mat., 2015,27(10):3743. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b00986

doi: 10.1021/acs.chemmater.5b00986     URL    
[11]
Jia F, Wang Q, Wu J, Li Y, Song S. ACS Sustain. Chem. Eng., 2017,5(8):7410. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b01880

doi: 10.1021/acssuschemeng.7b01880     URL    
[12]
Wang Z, Tu Q, Zheng S, Urban J J, Li S, Mi B. Nano Lett., 2017,17(12):7289. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b02804

doi: 10.1021/acs.nanolett.7b02804     URL    
[13]
Zhang X, Zhang W, Liu L, Yang M, Huang L, Chen K, Wang R, Yang B, Zhang D, Wang J, Nanotechnology, 2017,28(22):225101. https://iopscience.iop.org/article/10.1088/1361-6528/aa6c9b

doi: 10.1088/1361-6528/aa6c9b     URL    
[14]
Pandit S, Karunakaran S, Boda S K, Basu B, De M, ACS Appl. Mater. Interfaces, 2016,8(46):31567. https://pubs.acs.org/doi/10.1021/acsami.6b10916

doi: 10.1021/acsami.6b10916     URL    
[15]
Liu C, Kong D, Hsu P C, Yuan H, Lee H W, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini P A, Parker K M, Boehm A B, Cui Y. Nat. Nanotechnol., 2016,11(12):1098. https://doi.org/10.1038/nnano.2016.138

doi: 10.1038/nnano.2016.138     URL    
[16]
Frindt R F. J. Appl. Phys., 1966,37(4):1928.
[17]
Gan X, Zhao H, Quan X. Biosens. Bioelectron., 2017,89(1):56. https://linkinghub.elsevier.com/retrieve/pii/S0956566316302378

doi: 10.1016/j.bios.2016.03.042     URL    
[18]
Jonathan M L, Coleman N, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V, Science, 2011,311.
[19]
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Nano Lett., 2011,11(12):5111. https://pubs.acs.org/doi/10.1021/nl201874w

doi: 10.1021/nl201874w     URL    
[20]
Zeng Z, Sun T, Zhu J, Huang X, Yin Z, Lu G, Fan Z, Yan Q, Hng H H, Zhang H. Angew. Chem.-Int. Edit., 2012,51(36):9052. http://doi.wiley.com/10.1002/anie.201204208

doi: 10.1002/anie.201204208     URL    
[21]
Yu Y, Nam G H, He Q, Wu X J, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran F R, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. Nat. Chem., 2018,10(6):638. https://doi.org/10.1038/s41557-018-0035-6

doi: 10.1038/s41557-018-0035-6     URL    
[22]
Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H. J. Am. Chem. Soc., 2013,135(16):5998. https://pubs.acs.org/doi/10.1021/ja4019572

doi: 10.1021/ja4019572     URL    
[23]
Chang K, Hai X, Pang H, Zhang H, Shi L, Liu G, Liu H, Zhao G, Li M, Ye J. Adv. Mater., 2016,28(45):10033. http://doi.wiley.com/10.1002/adma.201603765

doi: 10.1002/adma.201603765     URL    
[24]
Shu Y, Zhang W, Cai H, Yang Y, Yu X, Gao Q. Nanoscale, 2019,11(14):6644. http://xlink.rsc.org/?DOI=C9NR00333A

doi: 10.1039/C9NR00333A     URL    
[25]
Li X, Zhu H. Journal of Materiomics, 2015,1(1):33. https://linkinghub.elsevier.com/retrieve/pii/S2352847815000040

doi: 10.1016/j.jmat.2015.03.003     URL    
[26]
Tan P, Sun J, Hu Y, Fang Z, Bi Q, Chen Y, Cheng J. J. Hazard. Mater., 2015,297:251. https://linkinghub.elsevier.com/retrieve/pii/S0304389415003660

doi: 10.1016/j.jhazmat.2015.04.068     URL    
[27]
Wan S, He F, Wu J, Wan W, Gu Y, Gao B. J. Hazard. Mater., 2016,314:32. https://linkinghub.elsevier.com/retrieve/pii/S0304389416303557

doi: 10.1016/j.jhazmat.2016.04.014     URL    
[28]
Sun Y, Shao D, Chen C, Yang S, Wang X. Environ. Sci. Technol., 2013,47(17):9904. https://pubs.acs.org/doi/10.1021/es401174n

doi: 10.1021/es401174n     URL    
[29]
Liu C, Jia F, Wang Q, Yang B, Song S. Appl. Mater. Today, 2017,9:220.
[30]
Ai K, Ruan C, Shen M, Lu L. Adv. Funct. Mater., 2016,26(30):5542. http://doi.wiley.com/10.1002/adfm.201601338

doi: 10.1002/adfm.201601338     URL    
[31]
Xie J F, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013,135:17881. https://pubs.acs.org/doi/10.1021/ja408329q

doi: 10.1021/ja408329q     URL    
[32]
Xie J F, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W. Adv. Mater., 2013,25(40):5807. http://doi.wiley.com/10.1002/adma.v25.40

doi: 10.1002/adma.v25.40     URL    
[33]
Yi H, Zhang X, Jia F, Wei Z, Zhao Y, Song S. Appl. Surf. Sci., 2019,483:521. https://linkinghub.elsevier.com/retrieve/pii/S0169433219309894

doi: 10.1016/j.apsusc.2019.03.350     URL    
[34]
Song Y, Lu M, Huang B, Wang D, Wang G, Zhou L. J. Alloy. Compd., 2018,737:113. https://linkinghub.elsevier.com/retrieve/pii/S0925838817342706

doi: 10.1016/j.jallcom.2017.12.087     URL    
[35]
Wang Q, Peng L, Gong Y, Jia F, Song S, Li Y. J. Mol. Liq., 2019,282:598. https://linkinghub.elsevier.com/retrieve/pii/S0167732219309857

doi: 10.1016/j.molliq.2019.03.052     URL    
[36]
Zhu H, Tan X, Tan L, Chen C, Alharbi N S, Hayat T, Fang M, Wang X. ACS Applied Nano Materials, 2018,1(6):2689. https://pubs.acs.org/doi/10.1021/acsanm.8b00388

doi: 10.1021/acsanm.8b00388     URL    
[37]
Du Y, Wang J, Zou Y, Yao W, Hou J, Xia L, Peng A, Alsaedi A, Hayat T, Wang X. Sci. Bull., 2017,62(13):913. https://linkinghub.elsevier.com/retrieve/pii/S2095927317302864

doi: 10.1016/j.scib.2017.05.025     URL    
[38]
Wang Q, Yang L, Jia F, Li Y, Song S, J. Mol. Liq., 2018,263:526. https://linkinghub.elsevier.com/retrieve/pii/S0167732217355885

doi: 10.1016/j.molliq.2018.04.149     URL    
[39]
Yin W, Dong X, Yu J, Pan J, Yao Z, Gu Z, Zhao Y. ACS Appl. Mater. Interfaces, 2017,9(25):21362. https://pubs.acs.org/doi/10.1021/acsami.7b04185

doi: 10.1021/acsami.7b04185     URL    
[40]
Gao Y, Chen C, Tan X, Xu H, Zhu K. J. Colloid Interface Sci., 2016,476:62. https://linkinghub.elsevier.com/retrieve/pii/S0021979716303071

doi: 10.1016/j.jcis.2016.05.022     URL    
[41]
Huang Q, Liu M Y, Li Y, Ruan J Y. J. Taiwan Inst. Chem. Eng., 2018,86:174. https://linkinghub.elsevier.com/retrieve/pii/S1876107017306685

doi: 10.1016/j.jtice.2017.12.027     URL    
[42]
Wang J, Wang P, Wang H, Dong J, Chen W, Wang X., Wang S, Hayat T, Alsaedi A, Wang X. ACS Sustain. Chem. Eng., 2017,5(8):7165. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b01347

doi: 10.1021/acssuschemeng.7b01347     URL    
[43]
Liu Y, Gu P, Jia L, Zhang G. J. Hazard. Mater., 2016,302:82. https://linkinghub.elsevier.com/retrieve/pii/S030438941530100X

doi: 10.1016/j.jhazmat.2015.09.045     URL    
[44]
Yang S, Hua M, Shen L, Han X, Xu M, Kuang L, Hua D. J. Hazard. Mater., 2018,354:191. https://linkinghub.elsevier.com/retrieve/pii/S0304389418303443

doi: 10.1016/j.jhazmat.2018.05.005     URL    
[45]
Yang S, Hua M, Shen L, Han X, Xu M, Kuang L, Hua D. J. Hazard. Mater., 2018,354:191. https://linkinghub.elsevier.com/retrieve/pii/S0304389418303443

doi: 10.1016/j.jhazmat.2018.05.005     URL    
[46]
Li Y, Zou G, Yang S, Wang Z, Chen T, Yu X, Guo Q, He R, Duan T, Zhu W. Chem. Eng. J., 2019,364:139. https://linkinghub.elsevier.com/retrieve/pii/S1385894719301895

doi: 10.1016/j.cej.2019.01.169     URL    
[47]
Li H, Xie F, Li W, Fahlman B D, Chen M, Li W. RSC Adv., 2016,6(107):105222. http://xlink.rsc.org/?DOI=C6RA22414H

doi: 10.1039/C6RA22414H     URL    
[48]
Massey A T, Gusain R, Kumari S, Khatri O P. Ind. Eng. Chem. Res., 2016,55(26):7124. https://pubs.acs.org/doi/10.1021/acs.iecr.6b01115

doi: 10.1021/acs.iecr.6b01115     URL    
[49]
Li Z, Meng X, Zhang Z. Mater. Res. Bull., 2019,111:238. https://linkinghub.elsevier.com/retrieve/pii/S0025540818327053

doi: 10.1016/j.materresbull.2018.11.012     URL    
[50]
Xie H, Xiong X. Journal of Environmental Chemical Engineering, 2017,5(1):1150. https://linkinghub.elsevier.com/retrieve/pii/S2213343717300441

doi: 10.1016/j.jece.2017.01.044     URL    
[51]
Mehta D, Mazumdar S, Singh S K. J. Water Process. Eng., 2015,7:244. https://linkinghub.elsevier.com/retrieve/pii/S221471441530026X

doi: 10.1016/j.jwpe.2015.07.001     URL    
[52]
Song H J, You S, Jia X H, Yang J. Ceram. Int., 2015,41(10):13896. https://linkinghub.elsevier.com/retrieve/pii/S0272884215015485

doi: 10.1016/j.ceramint.2015.08.023     URL    
[53]
Song H, You S, Jia X. J. Mater. Sci.-Mater. Electron., 2016,27(10):10841. http://link.springer.com/10.1007/s10854-016-5191-0

doi: 10.1007/s10854-016-5191-0     URL    
[54]
Chen P, Liu X, Jin R, Nie W, Zhou Y. Carbohydr. Polym., 2017,167:36. https://linkinghub.elsevier.com/retrieve/pii/S0144861717302242

doi: 10.1016/j.carbpol.2017.02.094     URL    
[55]
肖蓝(Xiao L), 王祎龙(Wang Y L), 于水利(Yu S L), 唐玉霖(Tang Y L). 化学进展 (Progress in Chemistry), 2013,25(2/3):419.
[56]
Chao Y, Yang L, Ji H, Zhu W, Pang J, Han C, Li H. Environ. Prog. Sustain. Energy, 2017,36(3):815. http://doi.wiley.com/10.1002/ep.v36.3

doi: 10.1002/ep.v36.3     URL    
[57]
Chao Y, Zhu W, Wu X, Hou F, Xun S, Wu P, Ji H, Xu H, Li H. Chem. Eng. J., 2014,243:60. https://linkinghub.elsevier.com/retrieve/pii/S138589471301629X

doi: 10.1016/j.cej.2013.12.048     URL    
[58]
Dong Y, Huang C, Yang X Y. Chem. Eng. J., 2019,361:322. https://linkinghub.elsevier.com/retrieve/pii/S1385894718324938

doi: 10.1016/j.cej.2018.12.019     URL    
[59]
Wan Z T, Chen S D, Song K, Yua P, Zhao N, Ouyang X P. Colloid Surf. A-Physicochem. Eng. Asp., 2018,546:237. https://linkinghub.elsevier.com/retrieve/pii/S0927775718301870

doi: 10.1016/j.colsurfa.2018.03.017     URL    
[60]
Krasian T, Punyodom W, Worajittiphon P. Chem. Eng. J., 2019,369:563. https://linkinghub.elsevier.com/retrieve/pii/S138589471930556X

doi: 10.1016/j.cej.2019.03.092     URL    
[61]
张文涛(Zhang W T). 西北农林科技大学博士论文( Doctoral Dissertation of Northwest A&F University), 2018.
[62]
赵凤阳(Zhao F Y), 姜永健(Jiang Y J), 刘涛(Liu T), 叶纯纯(Ye C C). 化学进展 (Progress in Chemistry), 2018,30(7):1013.
[63]
Mi B. Science, 2014,343:740. https://www.sciencemag.org/lookup/doi/10.1126/science.1250247

doi: 10.1126/science.1250247     URL    
[64]
Mi B. Science, 2019,364(6445):1033. https://www.sciencemag.org/lookup/doi/10.1126/science.aax3103

doi: 10.1126/science.aax3103     URL    
[65]
王茜(Wang Q), 郭晓燕(Guo X Y), 邵怀启(Shao H Q), 周启星(Zhou Q X), 胡万里(Hu W L). 化学进展 (Progress in Chemistry), 2015,10:1470. http://www.progchem.ac.cn//CN/abstract/abstract11600.shtml

doi: 10.7536/PC150321     URL    
[66]
Hu M, Mi B. Environ. Sci. Technol., 2013,47(8):3715. https://pubs.acs.org/doi/10.1021/es400571g

doi: 10.1021/es400571g     URL    
[67]
Li Y, Yang S, Zhang K, Bruggen B V. Desalination, 2019,454:48. https://linkinghub.elsevier.com/retrieve/pii/S0011916418311950

doi: 10.1016/j.desal.2018.12.016     URL    
[68]
Dervin S, Dionysiou D D, Pillai S C. Nanoscale, 2016,8(33):15115. http://xlink.rsc.org/?DOI=C6NR04508A

doi: 10.1039/C6NR04508A     URL    
[69]
Sun J, Chen Y, Hu C, Liu H, Qu J. Chemosphere, 2019,222(2):156. https://linkinghub.elsevier.com/retrieve/pii/S0045653519301389

doi: 10.1016/j.chemosphere.2019.01.129     URL    
[70]
Zhu J, Hou J, Uliana A, Zhang Y, Tian M, Bruggen B V. J. Mater. Chem. A, 2018,6(9):3773. http://xlink.rsc.org/?DOI=C7TA10814A

doi: 10.1039/C7TA10814A     URL    
[71]
Liu G, Jin W, Xu N. Angew. Chem.-Int. Edit., 2016,55(43):13384. http://doi.wiley.com/10.1002/anie.201600438

doi: 10.1002/anie.201600438     URL    
[72]
刘阳(Liu Y), 顾平(Gu P), 张光辉(Zhang G H). 化工进展 (Chemical Industry and Engineering Progress), 2017,36(11):4151.
[73]
万武波(Wan W B), 纪冉(Ji R), 何锋(He F). 化学进展 (Progress in Chemistry), 2017,29(8):833.
[74]
Lee C, Wei X, Kysar J W, Hone J. Science, 2008,321(5887):385. https://www.sciencemag.org/lookup/doi/10.1126/science.1157996

doi: 10.1126/science.1157996     URL    
[75]
Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Nat. Nanotechnol., 2015,321(5887):459.
[76]
Heiranian M, Farimani A B, Aluru N R. Nat. Commun., 2015,6:8616. https://doi.org/10.1038/ncomms9616

doi: 10.1038/ncomms9616     URL    
[77]
Kou J, Yao J, Wu L, Zhou X, Lu H, Wu F, Fan J. Phys. Chem. Chem. Phys., 2016,18(32):22210. http://xlink.rsc.org/?DOI=C6CP01967F

doi: 10.1039/C6CP01967F     URL    
[78]
Azamat J, Khataee A. Comput. Mater. Sci., 2017,137:201. https://linkinghub.elsevier.com/retrieve/pii/S0927025617302835

doi: 10.1016/j.commatsci.2017.05.043     URL    
[79]
Azamat J, Khataee A, Sadikoglu F. J. Mol. Liq., 2018,249:110.
[80]
Köhler M H, Bordin J R, Barbosa M C. J. Chem. Phys., 2018,148(22):222804. http://aip.scitation.org/doi/10.1063/1.5013926

doi: 10.1063/1.5013926     URL    
[81]
Lu N, Wang J, Floresca H C, Kim M J. Carbon, 2012,50(8):2961. http://dx.doi.org/10.1016/j.carbon.2012.02.078

doi: 10.1016/j.carbon.2012.02.078     URL    
[82]
Lemme M C, Williams J R, Lewis A. ACS Nano, 2009,3:2674. https://pubs.acs.org/doi/10.1021/nn900744z

doi: 10.1021/nn900744z     URL    
[83]
Thiruraman J P, Fujisawa K, Danda G, Das P M, Zhang T, Bolotsky A, Lopez N P, Nicolai A, Senet P, Terrones M, Drndic M. Nano Lett., 2018,18(3):1651. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b04526

doi: 10.1021/acs.nanolett.7b04526     URL    
[84]
Hirunpinyopas W, Prestat E, Worrall S D, Haigh S J, Dryfe R W, Bissett M A. ACS Nano, 2017,11(11):11082. https://pubs.acs.org/doi/10.1021/acsnano.7b05124

doi: 10.1021/acsnano.7b05124     URL    
[85]
Wang Z, Sim A, Urban J J, Mi B. Environ. Sci. Technol., 2018,52(17):9741. https://pubs.acs.org/doi/10.1021/acs.est.8b01705

doi: 10.1021/acs.est.8b01705     URL    
[86]
Zheng S, Tu Q, Urban J J, Li S, Mi B. ACS Nano, 2017,11(6):6440. https://pubs.acs.org/doi/10.1021/acsnano.7b02999

doi: 10.1021/acsnano.7b02999     URL    
[87]
Cui X, Wu X, Zhang J, Wang J, Zhang H, Du F, Qu L, Cao X, Zhang P. J. Mater. Chem. A, 2019,7(20):12698. http://xlink.rsc.org/?DOI=C9TA03159F

doi: 10.1039/C9TA03159F     URL    
[88]
Zhang P, Gong J L, Zeng G M, Song B, Cao W, Liu H Y, Huan S, Peng P. J. Membr. Sci., 2019,574:112. https://linkinghub.elsevier.com/retrieve/pii/S0376738818327984

doi: 10.1016/j.memsci.2018.12.046     URL    
[89]
Gao J, Zhang M, Wang J, Liu G, Liu H, Jiang Y. ACS Omega, 2019,4(2):4012. https://pubs.acs.org/doi/10.1021/acsomega.9b00155

doi: 10.1021/acsomega.9b00155     URL    
[90]
Liang X, Wang P, Wang J, Zhang Y, Wu W, Liu J, Bruggen B V. J. Membr. Sci., 2019,573:270. https://linkinghub.elsevier.com/retrieve/pii/S037673881831946X

doi: 10.1016/j.memsci.2018.12.015     URL    
[91]
Hu M, Mi B. J. Membr. Sci., 2014,469:80. https://linkinghub.elsevier.com/retrieve/pii/S0376738814004876

doi: 10.1016/j.memsci.2014.06.036     URL    
[92]
Lee T, Min S H, Gu M, Jung Y K, Lee W, Lee J U, Seong D G, Kim B S. Chem. Mat., 2015,27(11):3785. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b00491

doi: 10.1021/acs.chemmater.5b00491     URL    
[93]
Zhou J, Qin Z, Lu Y, Li X, An Q, Ji S, Wang N, Guo H. J. Taiwan Inst. Chem. Eng., 2018,84:196. https://linkinghub.elsevier.com/retrieve/pii/S1876107018300361

doi: 10.1016/j.jtice.2018.01.015     URL    
[94]
Li M N, Sun X F, Wang L, Wang S Y, Afzal M Z, Song C, Wang S G. Desalination, 2018,436:107. https://linkinghub.elsevier.com/retrieve/pii/S0011916417324098

doi: 10.1016/j.desal.2018.02.008     URL    
[95]
吴正颖(Wu Z Y), 刘谢(Liu X), 刘劲松(Liu J S), 刘守清(Liu S Q), 查振龙(Cha Z L), 陈志刚(Chen Z G). 化学进展 (Progress in Chemistry), 2019,31(8):1086.
[96]
Ding Y, Zhou Y, Nie W, Chen P. Appl. Surf. Sci., 2015,357:1606. https://linkinghub.elsevier.com/retrieve/pii/S0169433215024277

doi: 10.1016/j.apsusc.2015.10.030     URL    
[97]
Ibukun O, Evans P E, Dowben P A, Jeong H K. Chemical Physics, 2019,525:110419. https://linkinghub.elsevier.com/retrieve/pii/S0301010419300631

doi: 10.1016/j.chemphys.2019.110419     URL    
[98]
Wang C, Lin H, Liu Z, Wu J, Xu Z, Zhang C. Part. Part. Syst. Charact., 2016,33(4):221. http://doi.wiley.com/10.1002/ppsc.v33.4

doi: 10.1002/ppsc.v33.4     URL    
[99]
Adhikari S, Mandal S, Kim D H. Chem. Eng. J., 2019,373:31. https://linkinghub.elsevier.com/retrieve/pii/S1385894719310319

doi: 10.1016/j.cej.2019.05.017     URL    
[100]
Zhang S, Wang L, Liu C, Luo J, Crittenden J, Liu X, Cai T, Yuan J, Pei Y, Liu Y. Water. Res., 2017,121:11. https://linkinghub.elsevier.com/retrieve/pii/S004313541730372X

doi: 10.1016/j.watres.2017.05.013     URL    
[101]
Jiao S L, Liu L. Ind. Eng. Chem. Res., 2019,58(2):18141. https://pubs.acs.org/doi/10.1021/acs.iecr.9b03680

doi: 10.1021/acs.iecr.9b03680     URL    
[102]
Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y, Zhang J, Yin Y. Chem., 2018,4(6):1359. https://linkinghub.elsevier.com/retrieve/pii/S2451929418301153

doi: 10.1016/j.chempr.2018.03.002     URL    
[103]
Voiry D, Fullon R, Yang J, Silva C, Kappera R, Bozkurt I, Kaplan D, Lagos M J, Batson P E, Gupta G, Mohite A D, Dong L, Er D, Shenoy V B, Asefa T, Chhowalla M. Nat. Mater., 2016,15(9):1003. https://doi.org/10.1038/nmat4660

doi: 10.1038/nmat4660     URL    
[104]
Umukoro E H, Kumar N, Ngila J C, Arotiba O A. J. Electroanal. Chem., 2018,827:193. https://linkinghub.elsevier.com/retrieve/pii/S1572665718306246

doi: 10.1016/j.jelechem.2018.09.027     URL    
[105]
Fan X, Zhou Y, Zhang G, Liu T, Dong W. Appl. Catal. B-Environ., 2019,244:396. https://linkinghub.elsevier.com/retrieve/pii/S0926337318311202

doi: 10.1016/j.apcatb.2018.11.061     URL    
[106]
Zhao Y, Jafvert C T. Environ. Sci. Nano, 2015,2:136. http://xlink.rsc.org/?DOI=C4EN00209A

doi: 10.1039/C4EN00209A     URL    
[107]
Zhao Y, Hsieh H S, Wang M, Jafvert C T. Carbon, 2017,123:216. https://linkinghub.elsevier.com/retrieve/pii/S0008622317307303

doi: 10.1016/j.carbon.2017.07.048     URL    
[108]
张理勇(Zhang L Y), 方粮(Fang L), 彭向阳(Peng X Y). 物理学报 (Acta Physica Sinica), 2016,65(12):12710101.
[109]
Yang X, Li J, Liang T, Ma C, Zhang Y, Chen H, Hanagata N, Su H, Xu M. Nanoscale, 2014,6(17):10126. http://dx.doi.org/10.1039/c4nr01965b

doi: 10.1039/c4nr01965b     URL    
[110]
Xuan H, Dai W, Zhu Y, Ren J, Zhang J, Ge L. Sens. Actuator B-Chem., 2018,257:1110. https://linkinghub.elsevier.com/retrieve/pii/S0925400517322098

doi: 10.1016/j.snb.2017.11.078     URL    
[111]
Priyadharsan A, Shanavas S, Vasanthakumar V, Balamuralikrishnan B Anbarasan P M. Colloid Surf. A-Physicochem. Eng. Asp., 2018,559:43. https://linkinghub.elsevier.com/retrieve/pii/S0927775718310835

doi: 10.1016/j.colsurfa.2018.09.034     URL    
[112]
Liu S B, Zeng T H, Hofmann M, Burcombe E, Wei J, Jiang R R, Kong J, Chen Y. ACS Nano, 2011,5(9):6971. https://pubs.acs.org/doi/10.1021/nn202451x

doi: 10.1021/nn202451x     URL    
[113]
Wu R, Ou X, Tian R, Zhang J, Jin H, Dong M, Li J, Liu L. Nanoscale, 2018,10(43):20162. http://xlink.rsc.org/?DOI=C8NR04207A

doi: 10.1039/C8NR04207A     URL    
[114]
Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samori P. Chem. Soc. Rev., 2018,47(13):4860. http://xlink.rsc.org/?DOI=C8CS00417J

doi: 10.1039/C8CS00417J     URL    
[115]
Hwang J H, Islam M A, Choi H, Ko T J, Rodriguez K L, Chung H S, Jung Y, Lee W H. Anal. Chem., 2019,91(18):11770. https://pubs.acs.org/doi/10.1021/acs.analchem.9b02382

doi: 10.1021/acs.analchem.9b02382     URL    
[116]
Zhou W Y, Li S S, Xiao X Y, Chen S H, Liu J H, Huang X J. Chem. Commun., 2018,54(67):9329 http://xlink.rsc.org/?DOI=C8CC04575E

doi: 10.1039/C8CC04575E     URL    
[117]
Sun Y F, Sun J H, Wang J, Pi Z X, Wang L C, Yang M, Huang X J. Anal. Chim. Acta., 2019,1063:64. https://linkinghub.elsevier.com/retrieve/pii/S0003267019302818

doi: 10.1016/j.aca.2019.03.008     URL    
[118]
Zhi L, Zuo W, Chen F, Wang B. ACS Sustain. Chem. Eng., 2016,4(6):3398. https://pubs.acs.org/doi/10.1021/acssuschemeng.6b00409

doi: 10.1021/acssuschemeng.6b00409     URL    
[119]
Cui J, Xu S, Wang L. Sci. China-Mater., 2017,60(4):352. http://link.springer.com/10.1007/s40843-017-9019-4

doi: 10.1007/s40843-017-9019-4     URL    
[120]
Wang Y, Ni Y. Ana.l Chem., 2014,86(15):7463. https://pubs.acs.org/doi/10.1021/ac5012014

doi: 10.1021/ac5012014     URL    
[121]
Sha R, Vishnu N, Badhulika S. Sens. Actuator B-Chem., 2019,279:53. https://linkinghub.elsevier.com/retrieve/pii/S0925400518317428

doi: 10.1016/j.snb.2018.09.106     URL    
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[5] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[12] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[13] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[14] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[15] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.