English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 179-189 DOI: 10.7536/PC170825 前一篇   后一篇

• 综述 •

基于聚亚甲基的新型共聚物的可控合成

张浩1,2, 许芳1,2, 王合营1,2, 姜涛1, 马志2*   

  1. 1. 天津科技大学化工与材料学院 天津 300457;
    2. 中国科学院上海有机化学研究所 中国科学院有机功能分子合成与组装化学重点实验室 上海 200032
  • 收稿日期:2017-08-22 修回日期:2017-11-01 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 马志,mazhi728@sioc.ac.cn E-mail:mazhi728@sioc.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21374130)资助

Controlled Synthesis of New Polymethylene-Based Copolymers

Hao Zhang1,2, Fang Xu1,2, Heying Wang1,2, Tao Jiang1, Zhi Ma2*   

  1. 1. College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China;
    2. Key Laboratory of Synthesis and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2017-08-22 Revised:2017-11-01 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21374130).
对聚烯烃分子链结构和组成的精确控制可赋予聚烯烃新的性质和用途。近年来,聚亚甲基(聚乙烯类似物)及其共聚物的研究成为聚烯烃功能化领域的研究热点之一。本文首先简单介绍了分子量分布窄且分子量可调控的聚亚甲基合成方法——叶立德同源聚合;接着对用于同源聚合的硼烷引发剂和叶立德单体进行了详细介绍;然后重点评述利用叶立德同源聚合与开环聚合、原子转移自由基聚合、可逆加成-断裂链转移聚合、氮氧自由基调控聚合、离子聚合、开环易位聚合和各种偶联反应等相结合的组合策略;最后,对基于聚亚甲基的新型共聚物的可控合成方法及其实际应用进行了展望。
Novel property and application of polyolefin stem from precise control of its structure and composition. Polymethylene(polyethylene's analogue) and its copolymers have become one of hot topics of current research in the polyolefin functionalization field in recent years. In this review, firstly, the polyhomologation of ylide leading to linear polymethylenes with controllable molecular weight and narrow molecular weight distribution is introduced briefly. Then, various borane initiators and ylide monomers used for polyhomologation are described in detail. In addition, the controllable syntheses of new polymethylene-based copolymers by combining polyhomologation with ring-opening polymerization, atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide mediated polymerization, ionic polymerization, ring-opening metathesis polymerization and coupling reactions, are reviewed. Finally, the future development of the controllable synthesis strategies and practical application of new polymethylene-based copolymers are prospected.
Contents
1 Introduction
2 Initiators of polyhomologation
2.1 Trifunctional organoboranes
2.2 Bifunctional organoboranes
2.3 Monofunctional organoboranes
3 Monomers of polyhomologation
3.1 Sulfur ylides
3.2 Arsenic ylides
4 Combination with other methodologies to prepare polymethylene-based copolymers
4.1 Combination with ring-opening polymerization
4.2 Combination with atom transfer radical polymerization
4.3 Combination with reversible addition-fragmentation chain transfer polymerization
4.4 Combination with nitroxide-mediated radical polymerization
4.5 Combination with ionic polymerization
4.6 Combination with ring-opening metathesis polymerization
4.7 Combination with coupling reaction
5 Conclusion and outlook

中图分类号: 

()
[1] 郑宁来(Zheng N L). 合成材料老化与应用(Synthetic Materials Aging and Application). 2016,(6):114.
[2] 洪定一(Hong D Y). 塑料工业手册(聚烯烃)(Handbook of Plastic Industry/Polyolefins). 北京:化学工业出版社(Beijing:Chemical Industry Press), 1999. 296.
[3] Peacock A J. Handbook of Polyethylene:Structure, Properties, and Applications. NY:CRC Press, 2000.
[4] Vasile C. Handbook of Polyolefins, 2nd ed. NY:Marcel Dekker, 2000. 249.
[5] Tufariello J J, Lee L T C. J. Am. Chem. Soc., 1966, 88:4757.
[6] Tufariello J J, Lee L T C, Wojtkowski P. J. Am. Chem. Soc., 1967, 89:6804.
[7] Shea K J, Walker J W, Zhu H, Paz M. J. Am. Chem. Soc., 1997, 119:9049.
[8] Shea K J. Chem. Eur. J., 2000, 6:1113.
[9] Luo J, Shea K J. Acc. Chem. Res., 2010, 43:1420.
[10] Xu F, Dong P, Cui K, Bu S Z, Huang J, Li G Y, Jiang T, Ma Z. RSC Adv., 2016, 6:69828.
[11] Busch B B, Staiger C L, Stoddard J M, Shea K J. Macromolecules, 2002, 35:8330.
[12] Yuan C, Lv H C, Li Q Z, Yang S, Zhao Q L, Huang J, Wei L H, Ma Z. J. Polym. Sci., Part A:Polym. Chem., 2012, 50:2398.
[13] Xu T T, Zhu J, Yuan C, Yang Q L, Cui K, Li C H, Wei L H, Ma Z. Eur. Polym. J., 2014, 54:109.
[14] 李启蒸(Li Q Z), 张国艺(Zhang G Y), 黄晋(Huang J), 赵巧玲(Zhao Q L), 魏柳荷(Wei L H), 何占航(He Z H), 马志(Ma Z). 化学学报(Acta Chimica Sinica), 2011, 69(4):497.
[15] Li Q Z, Zhang G Y, Chen J Z, Zhao Q L, Lv H C, Huang J, Wei L H, D'Agosto F, Boisson C, Ma Z. J. Polym. Sci. Part A:Polym. Chem., 2011, 49:511.
[16] Zhang Z, Gnanou Y, Hadjichristidis N. Polym. Chem., 2016, 7:5507.
[17] Zhang Z, Bilalis P, Zhang H F, Gnanou Y, Hadjichristidis N. Macromolecules, 2017, 50:4217.
[18] Chen J Z, Cui K, Zhang S Y, Xie P, Zhao Q L, Huang J S, Li P, Li G Y, Ma Z. Macromol. Rapid Commun., 2009, 30:532.
[19] Chen J Z, Zhao Q L, Shi L P, Huang J, Li G Y, Zhang S Y,Ma Z. J. Polym. Sci., Part A:Polym. Chem., 2009, 47:5671.
[20] Chen J Z, Zhao Q L, Lv H C, Huang J, Cao S K, Ma Z. J. Polym. Sci. Part A:Polym. Chem., 2010, 48:1894.
[21] Xue Y, Zhang S S, Cui K, Huang J, Zhao Q L, Lan P, Cao S K, Ma Z. RSC Adv., 2015, 5:7090.
[22] 吕会朝(Lv H C), 徐慎刚(Xu S G), 赵巧玲(Zhao Q L), 黄晋(Huang J), 曹少魁(Cao S K), 马志(Ma Z). 化学学报(Acta Chimica Sinica), 2011, 69(17):1126.
[23] Lv H C, Xue Y, Zhao Q L, Huang J, Xu S G, Cao S K, Ma, Z. J. Polym. Sci., Part A:Polym. Chem., 2012, 50:3641.
[24] Xue Y, Lv H C, Zhao Q L, Huang J, Xu S G, Cao S K, Ma Z. Polym. Chem., 2013, 4:307.
[25] Zhang Z, Zhang H F, Gnanou Y, Hadjichristidis, N. Chem. Commun., 2015, 51:9936.
[26] Zhang Z, Altaher M, Zhang H F, Wang D, Hadjichristidis N. Macromolecules, 2016, 49:2630.
[27] Alkayal N, Zhang Z, Bilalis P, Gnanou Y, Hadjichristidis N. Macromol. Chem. Phys., 2017, 218:1600568.
[28] Wang X, Gao J P, Zhao Q L, Huang J, Mao G L, Wu W, Ning Y N, Ma Z. J. Polym. Sci., Part A:Polym. Chem., 2013, 51:2892.
[29] Zhou X Z, Shea K J. Macromolecules, 2001, 34:3111.
[30] Zhang H F, Alkayal N, Gnanoub Y, Hadjichristidis N. Chem. Commun., 2013, 49:8952.
[31] Zhang H F, Hadjichristidis N. Macromolecules, 2016, 49:1590.
[32] Zhang H F, Banerjee S, Faust R, Hadjichristidis N. Polym. Chem., 2016, 7:1217.
[33] Zhang H F, Gnanou Y, Hadjichristidis N. Polym. Chem., 2014, 5:6431.
[34] Zhang H F, Zhang Z, Gnanou Y, Hadjichristidis N. Macromolecules, 2015, 48:3556.
[35] Alkayal N, Hadjichristidis N. Polym. Chem., 2015, 6:4921.
[36] Alkayal N, Durmaz H, Tunca U, Hadjichristidis N. Polym. Chem., 2016, 7:2986.
[37] Alkayal N, Zapsas G, Bilalis P, Hadjichristidis N. Polymer, 2016, 107:415.
[38] Zhao R B, Zhang Y, Chung J, Shea K. ACS Macro Lett., 2016, 5:854.
[39] Zhang H F, Alkayal N, Gnanou Y, Hadjichristidis N. Macromol. Rapid Commun., 2014, 35:378.
[40] 荣雷(Rong L), 宁英男(Ning Y N), 高金苹(Gao J P), 毛国梁(Mao G L), 马志(Ma Z).化学进展(Progress in Chemistry), 2014, 26(8):1369.
[41] Shea K J, Busch B B, Paz M M. Angew. Chem. Int. Ed., 1998, 37:1391.
[42] Wagner C E, Shea K J. Org. Lett., 2001, 3:3063.
[43] Wagner C E, Kim J S, Shea K J. J. Am. Chem. Soc., 2003, 125:12179.
[44] Wagner C E, Rodriguez A A, Shea K J. Macromolecules, 2005, 38:7286.
[45] Shea K J, Staiger C L, Lee S Y. Macromolecules, 1999, 32:3157.
[46] Brown H C, Bhat N G, Somayaji V. Organometallics, 1983, 2:1311.
[47] Slayden S W. J. Org. Chem., 1981, 12:2311.
[48] Bielawski C W. Science, 2002, 297:2041.
[49] Endo K. Adv. Polym. Sci., 2008, 217:121.
[50] Schappacher M, Deffieux A. J. Am. Chem. Soc., 2008, 130:14684.
[51] Laurent B A, Grayson S M. Chem. Soc. Rev., 2009, 38:2202.
[52] Nasongkla N, Chen B, Macaraeg N, Fox M E, Frechet J M J, Szoka F C. J. Am. Chem. Soc., 2009, 131:3842.
[53] 荣雷(Rong L). 东北石油大学硕士论文(Master Dissertation of Northeast Petroleum University), 2015.
[54] Brown H C, Gupta S K. J. Am. Chem. Soc., 1971, 93:1816.
[55] Brown H C, Gupta S K. J. Am. Chem. Soc., 1975, 97:5249.
[56] Lane C F, Kabalka G W. Tetrahedron., 1976, 32:981.
[57] Wang D, Hadjichristidis N. Chem. Commun., 2017, 53:1196.
[58] Clary J W, Rettenmaier T J, Snelling R, Bryks W, Banwell J, Wipke W T, Singaram B. J. Org. Chem., 2011, 76:9602.
[59] Sulc R, Zhou X Z, Shea K J. Macromolecules, 2006, 39:4948.
[60] Bai J, Shea K J. Macromol. Rapid Commun., 2006, 27:1223.
[61] Zhou X Z, Shea K J. J. Am. Chem. Soc., 2000, 122:11515.
[62] Zhao R B, Shea K J. ACS Macro Lett., 2015, 4:584.
[63] Busch B B, Paz M M, Shea K J, Staiger C L. J. Am. Chem. Soc., 2002, 124:3636.
[64] Corey E J, Chaykovsky M. J. Am. Chem. Soc., 1965, 87:1353.
[65] Goddard J P, Lixon P, Le Gall T, Mioskowski C. J. Am. Chem. Soc., 2003, 125:9242.
[66] Mondière R, Goddard J P, Carrot G, Le Gall T, Mioskowski C. Macromolecules, 2005, 38:663.
[67] Mondière R, Goddard J P, Huiban M, Carrot G, Le Gall T, Mioskowski C. Chem. Commun., 2006:723.
[68] Wang D, Zhang Z, Hadjichristidis N. ACS Macro Lett., 2016, 5:387.
[1] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[2] 张世亮, 姚淇露, 卢章辉*. 肼硼烷的合成及产氢[J]. 化学进展, 2017, 29(4): 426-434.
[3] 沈艳芳, 徐畅, 黄敏, 王海燕, 程龙玖. 硼团簇、硼烷及金属硼化物的研究现状[J]. 化学进展, 2016, 28(11): 1601-1614.
[4] 张磊, 涂倩, 陈学年, 刘蒲. 氨硼烷释氢纳米金属催化剂的研究[J]. 化学进展, 2014, 26(05): 749-755.
[5] 赵娟, 黄鹏程, 陈功, 詹茂盛. 碳十硼烷及其衍生物的反应性及应用[J]. 化学进展, 2012, 24(04): 556-567.
[6] 吕维华,王荣民,何玉凤,张慧芳. 智能涂料制备方法探索与应用*[J]. 化学进展, 2008, 20(0203): 351-361.
[7] 易玲敏,詹晓力,陈丰秋. (甲基)丙烯酸氟烷基酯的“活性”/可控聚合*[J]. 化学进展, 2004, 16(06): 954-.