English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 749-755 DOI: 10.7536/PC131128 前一篇   后一篇

• 综述与评论 •

氨硼烷释氢纳米金属催化剂的研究

张磊1, 涂倩1, 陈学年2, 刘蒲*1   

  1. 1. 郑州大学化学与分子工程学院 郑州 450001;
    2. 河南师范大学化学化工学院 新乡 453007
  • 收稿日期:2013-11-01 修回日期:2014-02-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 刘蒲,e-mail:liupu@zzu.edu.cn E-mail:liupu@zzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. J1210060)资助

Nano Metal Catalysts in Dehydrogenation of Ammonia Borane

Zhang Lei1, Tu Qian1, Chen Xuenian2, Liu Pu*1   

  1. 1. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received:2013-11-01 Revised:2014-02-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. J1210060)

化学储氢材料要求具有高的氢存储容量。氨硼烷(NH3BH3,AB)的氢含量高达19.6 wt%,是一种具有潜在应用前景的氢存储介质。AB的水解释氢容量高达7.8 wt %,热解释氢则可释放出19.6 wt %的氢,显示出其在化学储氢方面的巨大潜力。在AB释氢研究中,催化剂是研究的核心技术和重要方向。由于纳米催化剂在AB释氢中所表现出的优良催化性能,本文将对氨硼烷释氢纳米金属催化剂及其性能的研究进行全面的总结和展望。

As the chemical hydrogen storage material, it must have a high hydrogen storage capacity. Ammonia borane (NH3BH3, AB), whose hydrogen content is as high as 19.6 wt%, is regarded as a potential hydrogen storage medium with the bright future. The capacity of AB hydrolysis dehydrogenation is up to 7.8 wt%. The capacity of AB pyrolysis dehydrogenation can release 19.6 wt% of hydrogen. Both the hydrolysis dehydrogenation and the pyrolysis dehydrogenation have shown its great potential in the chemical hydrogen storage. In the study of AB dehydrogenation, catalyst is the key technology and the important research direction. Among all the catalysts about AB dehydrogenation, nano metal catalysts have been investigated for their excellent performance. In this paper, the nano catalysts and their performance about the dehydrogenation of ammonia borane are reviewed.

Contents
1 Introduction
2 One-component nano metal catalysts
2.1 Nano rhodium catalysts
2.2 Nano palladium catalysts
2.3 Nano ruthenium catalysts
2.4 Nano nickel catalysts
2.5 Other nano metals catalysts
3 Two-components nano metal catalysts
3.1 The supported bimetal catalysts
3.2 The alloy bimetal catalysts
3.3 The core-shell bimetal catalysts
4 Three-components nano metal nanoparticles
5 Conclusions and outlook

中图分类号: 

()

[1] Xiong Z, Yong C K, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, Johnson S R. Nat. Mater., 2008, 7:138.
[2] Louis Schlapbach A Z. Nature, 2001, 414:353.
[3] Hwang H T, Al-Kukhun A, Varma A. Int. J. Hydrogen Energ., 2012, 37:2407.
[4] Luo J H, Kang X D, Wang P. The J. Phys. Chem. C, 2010, 114:10606.
[5] Sit V, Geanangel R A. Thermochim. Acta, 1987, 113:379.
[6] Toche F, Chiriac R, Demirci U B, Miele P. Int. J. Hydrogen. Energ., 2012, 37:6749.
[7] Karahan S, Zahmakiran M, Ozkar S. Chem. Commun., 2012, 48:1180.
[8] Chandra M, Xu Q. J. Power Sources, 2006, 156:190.
[9] Marziale A N, Friedrich A, Klopsch I, Drees M, Celinski V R. J. Am. Chem. Soc., 2013, 135:13342.
[10] Nelson D J, Truscott B J, Egbert J D, Nolan S P. Organomet., 2013, 32:3769.
[11] Ghatak K, Vanka K. Comput. Theor. Chem., 2012, 992:18.
[12] Rossin A, Bottari G, Lozano-Vila A M, Paneque M, Peruzzini M, Rossi A, Zanobini F. Dalton. Trans., 2013, 42:3533.
[13] Sonnenberg J F, Morris R H. ACS Catal., 2013, 3:1092.
[14] Robertson A P, Suter R, Chabanne L, Whittell G R. Inorg. Chem., 2011, 50:12680.
[15] Song P, Li Y, Li W, He B, Yang J, Li X. Int. J. Hydrogen Energ., 2011, 36:10468.
[16] Conley B L, Guess D, Williams T J. J. Am. Chem. Soc., 2011, 133:14212.
[17] Umegaki T, Takei C, Watanuki Y, Xu Q, Kojima Y. J. Mol. Catal. A: Chem., 2013, 371:1.
[18] Xi P, Chen F, Xie G, Ma C, Liu H, Shao C, Wang J, Xu Z, Xu X, Zeng Z. Nanoscale, 2012, 4:5597.
[19] Yousef A, Barakat N A M, El-Newehy M, Kim H Y. Int. J. Hydrogen Energy, 2012, 37:17715.
[20] Wen M, Zhou S, Wu Q, Zhang J, Wu Q, Wang C, Sun Y. J. Power Sources, 2013, 232:86.
[21] Zahmakiran M, Ayvali T, Philippot K. Langmuir, 2012, 28:4908.
[22] Durap F, Zahmak?ran M, Özkar S. Appl. Catal. A, 2009, 369:53.
[23] Ayvali T, Zahmakiran M, Özkar S. Dalton. Trams., 2011, 40:3584.
[24] Metin Ö, Duman S, Dinç M, Özkar S. J. Phys. Chem. C, 2011, 115:10736.
[25] Metin Ö, Kayhan E, Özkar S, Schneider J J. Int. J. Hydrogen Energy, 2012, 37:8161.
[26] K?l?ç B, ?encanl? S, Metin Ö. J. Mol. Catal. A: Chem., 2012, 361:104.
[27] Kim S K, Kim T J, Kim T Y, Lee G, Park J T, Nam S W, Kang S O. Chem. Commun., 2012, 48:2021.
[28] Zahmakiran M. Mater. Sci. Eng., B 2012, 177:606.
[29] Can H, Metin Ö. Appl. Catal. B: Environ., 2012, 125:304.
[30] Rachiero G P, Demirci U B, Miele P. Catal. Today, 2011, 170:85.
[31] Chen G, Desinan S, Rosei R, Rosei F, Ma D. Chem. Commun., 2012, 48:8009.
[32] Xin G, Yang J, Li W, Zheng J, Li X. Eur. J. Inorg. Chem., 2012, 2012:5722.
[33] Zahmak?ran M, Ayval? T, Akbayrak S, Çal??kan S, Çelik D, Özkar S. Catal. Today, 2011, 170:76.
[34] Umegaki T, Xu Q, Kojima Y. J. Power Sources, 2012, 216:363.
[35] Aijaz A, Karkamkar A, Choi Y J, Tsumori N, Ronnebro E, Autrey T, Shioyama H, Xu Q. J. Am. Chem. Soc., 2012, 134:13926.
[36] Gadipelli S, Ford J, Zhou W, Wu H, Udovic T J, Yildirim T. Chem. Eur.J., 2011, 17:6043.
[37] Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H. Angew. Chem. Int. Ed., 2013, 52:7446.
[38] Panthi G, Barakat N A M, Abdelrazek K K, Yousef A, Jeon K S, Kim H Y. Ceram. Int., 2013, 39:1469.
[39] Ferrando R, Jellinek J, Johnston R L. Chem. Rev., 2008, 108:845.
[40] Qiu F, Li L, Liu G, Wang Y, An C, Xu C, Xu Y, Wang Y, Jiao L, Yuan H. Int. J. Hydrogen Energy, 2013, 38:7291.
[41] Wang X, Liu D, Song S, Zhang H. Chem. Eur.J., 2013, 19:8082.
[42] Zhou X, Chen Z, Yan D, Lu H. J. Mater. Chem., 2012, 22:13506.
[43] Yan J M, Wang Z L, Wang H L, Jiang Q. J. Mater. Chem., 2012, 22:10990.
[44] Umegaki T, Yan J M, Zhang X B, Shioyama H, Kuriyama N, Xu Q. J. Power Sources, 2009, 191:209.
[45] Rachiero G P, Demirci U B, Miele P. Int. J. Hydrogen Energy, 2011, 36:7051.
[46] Akdim O, Demirci U B, Miele P. Int. J. Hydrogen Energy, 2013, 38:5627.
[47] Qiu F Y, Wang Y J, Wang Y P, Li L, Liu G, Yan C, Jiao L F, Yuan H T. Catal. Today, 2011, 170:64.
[48] Li C, Zhou J, Gao W, Zhao J, Liu J, Zhao Y, Wei M, Evans D G, Duan X. J. Mater. Chem. A, 2013, 1:5370.
[49] Du J, Cheng F, Si M, Liang J, Tao Z. Int. J. Hydrogen Energy, 2013, 38:5768.
[50] Yan J M, Zhang X B, Han S, Shioyama H, Xu Q. J. Power Sources, 2009, 194:478.
[51] Chen G, Desinan S, Rosei R, Rosei F, Ma D. Chem. Eur.J., 2012, 18:7925.
[52] Zhou S, Wen M, Wang N, Wu Q, Cheng L. J. Mater. Chem., 2012, 22:16858.
[53] He T, Wang J, Liu T, Wu G, Xiong Z, Yin J, Chu H, Zhang T, Chen P. Catal. Today, 2011, 170:69.
[54] Amali A J, Aranishi K, Uchida T, Xu Q. Part. Part. Syst. Char., 2013, 30:888.
[55] Nirmala R, Kim H Y, Yi C, Barakat N A M. Int. J. Hydrogen Energy, 2012, 37:10036.
[56] Sun B, Wen M, Wu Q, Peng J. Adv. Funct. Mater., 2012, 22:2860.
[57] Wen M, Sun B, Zhou B, Wu Q, Peng J. J. Mater. Chem., 2012, 22:11988.
[58] Du Y, Cao N, Yang L, Luo W, Cheng G. New J. Chem., 2013, 37:3035.
[59] Yang L, Luo W, Cheng G. ACS Appl. Mater. Interfaces, 2013, 5:8231.
[60] Wang J, Qin Y L, Liu X, Zhang X B. J. Mater. Chem., 2012, 22:12468.
[61] Lu Z H, Jiang H L, Yadav M, Aranishi K, Xu Q. J. Mater. Chem., 2012, 22:5065.
[62] Yang X, Cheng F, Tao Z, Chen J. J. Power Sources, 2011, 196:2785.
[63] Jiang H L, Akita T, Xu Q. Chem. Commun., 2011, 47:10999.
[64] Kitchin J R, Norskov J K, Barteau M A, Chen J G. Phys. Rev. Lett., 2004, 93:156801.
[65] Aranishi K, Jiang H L, Akita T, Haruta M, Xu Q. Nano Research, 2011, 4:1233.
[66] Wang H L, Yan J M, Wang Z L, Jiang Q. Int. J. Hydrogen Energy, 2012, 37:10229.
[67] Yang L, Su J, Meng X, Luo W, Cheng G. J. Mater. Chem. A, 2013, 1:10016.
[68] Kalidindi S B, Vernekar A A, Jagirdar B R. Phys. Chem. Chem. Phys., 2009, 11:770.

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[7] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[8] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[9] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[10] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[11] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[12] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[13] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[14] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[15] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.