English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1601-1614 DOI: 10.7536/PC160533 前一篇   后一篇

• 综述与评论 •

硼团簇、硼烷及金属硼化物的研究现状

沈艳芳, 徐畅, 黄敏, 王海燕, 程龙玖*   

  1. 安徽大学化学化工学院 合肥 230601
  • 收稿日期:2016-05-01 修回日期:2016-07-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 程龙玖 E-mail:clj@ustc.edu
  • 基金资助:
    国家自然科学基金项目(No.21273008,21573001)资助

Research Advances of Boron Clusters, Borane and Metal-Doped Boron Compounds

Shen Yanfang, Xu Chang, Huang Min, Wang Haiyan, Cheng Longjiu*   

  1. College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
  • Received:2016-05-01 Revised:2016-07-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273008, 21573001).
硼原子因其半径小、缺电子、配位数大、价电子sp2杂化和三中心键等特点引起了科学家的高度关注。其团簇的电子结构、稳定性、芳香性和成键方式等性质的研究成为化学领域的一大热点。由于硼化物多样性的特点,其在光学、能源和储存工业气体方面具有潜在的应用价值。本文简述了近几年全硼团簇、硼烷及金属硼化物的研究现状。其中,分别从中性、阴离子和阳离子三种形式对全硼团簇和硼烷进行概括;金属掺杂硼化物主要包括金属掺杂的纯硼团簇和硼烷、过渡金属掺杂的三明治形式复合物以及金属中心硼分子轮。
Boron atom has received much attention from scientists owing to its unique characters, such as short covalent radius, electron deficiency, large coordination number, sp2 hybridization of valence electrons and three-center bonds. Due to the research of the electronic structure, stability, aromaticity and bonding nature, boron clusters have become a sparkling rising star on the horizon of chemistry. Meanwhile, boron compounds have a vast applications in optics, energy and industrial gas storage because of their rich features. This paper systematicly reviewes the recent research progresses of pure-boron clusters, borane and metal-doped boron clusters. The pure-boron clusters and borane are generalized from neutral, anionic and cationic three types. The metal-doped boron clusters mainly include metal-doped all-boron clusters and borane, transition-metal sandwich-type complexes as well as metal-centered boron molecular wheels.

Contents
1 Introduction
2 Pure-boron clusters
2.1 Neutral boron clusters
2.2 Anionic boron clusters
2.3 Cationic boron clusters
3 Borane clusters
3.1 Anionic borane clusters
3.2 Neutral borane clusters
3.3 Cationic borane clusters
4 Metal-doped boron clusters
4.1 Metal-doped all-boron clusters
4.2 Metal-doped borane compounds
4.3 Transition-metal sandwich-type complexes
4.4 Metal-centered boron molecular wheels
5 Conclusion

中图分类号: 

()
[1] Zhang H, Wang J, Tian Z X, Liu Y. Phys. Chem. Chem. Phys., 2015, 17:13821.
[2] Lv J, Wang Y C, Zhu L, Ma Y M. Nanoscale, 2014, 6:11692.
[3] Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S. J. Phys. Chem. A, 2014, 118:8098.
[4] Osorio E, Olson J K, Tiznado W, Boldyrev A I. Chem.-Eur. J., 2012, 18:9677.
[5] Tse J S. Nature, 2009, 457:800.
[6] Akman N, Tas M, Özdo D?an C, Boustani I. Phys. Rev. B, 2011, 84.
[7] Slough W J, Kandalam A K, Pandey R. J. Chem. Phys., 2010, 132:104304.
[8] Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I. Acc. Chem. Res., 2014, 47:1349.
[9] Tai T B, Nguyen M T. Phys. Chem. Chem. Phys., 2015, 17:13672.
[10] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S. Coord. Chem. Rev., 2006, 250:2811.
[11] Cheng L J. J. Chem. Phys., 2012, 136:104301.
[12] Zhao J J, Huang X M, Shi R L, Liu H S, Su Y, King R B. Nanoscale, 2015, 7:15086.
[13] Tai T B, Duong L V, Pham H T, Mai D T, Nguyen M T. Chem. Commun., 2014, 50:1558.
[14] Li W L, Chen Q, Tian W J, Bai H, Zhao Y F, Hu H S, Li J, Zhai H J, Li S D, Wang L S. J. Am. Chem. Soc., 2014, 136:12257.
[15] Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2014, 16:18282.
[16] Tai T B, Nguyen M T. Chem. Commun., 2015, 51:7677.
[17] Lu Q L, Luo Q Q, Li Y D, Huang S G. Phys. Chem. Chem. Phys., 2015, 17:20897.
[18] Lu H G, Li S D. J. Chem. Phys., 2013, 139:224307.
[19] Hayami W, Otani S. J. Phys. Chem. A, 2011, 115:8204.
[20] Kawai R, Weare J H. J. Chem. Phys., 1991, 95:1151.
[21] Zhai H J, Kiran B, Li J, Wang L S. Nat. Mater., 2003, 2:827.
[22] Kiran B, Kumar G G, Nguyen M T, Kandalam A K, Jena P. Inorg. Chem., 2009, 48:9965.
[23] Kah C B, Yu M, Tandy P, Jayanthi C S, Wu S Y. Nanotechnology, 2015, 26:405701.
[24] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S. PNAS, 2005, 102:961.
[25] An W, Bulusu S, Gao Y, Zeng X C. J. Chem. Phys., 2006, 124:154310.
[26] Johansson M P. J. Phys. Chem. C, 2009, 113:524.
[27] Wang Y J, Zhao Y F, Li W L, Jian T, Chen Q, You X R, Ou T, Zhao X Y, Zhai H J, Li S D, Li J, Wang L S. J. Chem. Phys., 2016, 144:064307.
[28] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S. Nature Chem., 2014, 6:727.
[29] He R X, Zeng X C. Chem. Commun., 2015, 51:3185.
[30] Tai T B, Nguyen M T. Nanoscale, 2015, 7:3316.
[31] Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I. Phys. Rev. Lett., 2007, 98:166804.
[32] Muya J T, De Proft F, Geerlings P, Nguyen M T, Ceulemans A. J. Phys. Chem. A, 2011, 115:9069.
[33] Zhao J J, Wang L, Li F Y, Chen Z F. J. Phys. Chem. A, 2010, 114:9969.
[34] Wang X Q. Phys. Rev. B, 2010, 82:153409.
[35] De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S. Phys. Rev. Lett., 2011, 106:225502.
[36] Li F Y, Jin P, Jiang D E, Wang L, Zhang S B, Zhao J J, Chen Z F. J. Chem. Phys., 2012, 136:074302.
[37] Li D Z, Bai H, Ou T, Chen Q, Zhai H J, Li S D. J. Chem. Phys., 2015, 142:014302.
[38] Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S. Nat. Commun., 2015, 6:8654.
[39] Romanescu C, Sergeeva A P, Li W L, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2011, 133:8646.
[40] Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2003, 42:6004.
[41] Alexandrova A N, Zhai H J, Wang L S, Boldyrev A I. Inorg. Chem., 2004, 43:3552.
[42] Fowler P W, Gray B R. Inorg. Chem., 2007, 46:2892.
[43] Pan L L, Li J, Wang L S. J. Chem. Phys., 2008, 129:024302.
[44] Sergeeva A P, Zubarev D Y, Zhai H J, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2008, 130:7244.
[45] Huang W, Sergeeva A P, Zhai H J, Averkiev B B, Wang L S, Boldyrev A I. Nature Chem., 2010, 2:202.
[46] Sergeeva A P, Averkiev B B, Zhai H J, Boldyrev A I, Wang L S. J. Chem. Phys., 2011, 134:224304.
[47] Jiménez-Halla J O C, Islas R, Heine T, Merino G. Angew. Chem. Int. Ed., 2010, 49:5668.
[48] Tai T B, Ceulemans A, Nguyen M T. Chem.-Eur. J., 2012, 18:4510.
[49] Tai T B, Havenith R W, Teunissen J L, Dok A R, Hallaert S D, Nguyen M T, Ceulemans A. Inorg. Chem., 2013, 52:10595.
[50] Piazza Z A, Li W L, Romanescu C, Sergeeva A P, Wang L S, Boldyrev A I. J. Chem. Phys., 2012, 136:104310.
[51] Sergeeva A P, Piazza Z A, Romanescu C, Li W L, Boldyrev A I, Wang L S. J. Am. Chem. Soc., 2012, 134:18065.
[52] Popov I A, Piazza Z A, Li W L, Wang L S, Boldyrev A I. J. Chem. Phys., 2013, 139:144307.
[53] Chen Q, Li W L, Zhao Y F, Zhang S Y, Hu H S, Bai H, Li H R, Tian W J, Lu H G, Zhai H J, Li S D, Li J, Wang L S. ACS Nano, 2015, 9:754.
[54] Oger E, Crawford N R, Kelting R, Weis P, Kappes M M, Ahlrichs R. Angew. Chem., Int. Ed., 2007, 46:8503.
[55] Aihara J. J. Phys. Chem. A, 2001, 105:5486.
[56] Fowler J E, Ugalde J M. J. Phys. Chem. A, 2000, 104:397.
[57] Martinez-Guajardo G, Sergeeva A P, Boldyrev A I, Heine T, Ugalde J M, Merino G. Chem. Commun., 2011, 47:6242.
[58] Yuan Y, Cheng L J. J. Chem. Phys., 2012, 137:044308.
[59] Chen Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Angew. Chem., 2015, 127:8278.
[60] Bai H, Li S D. J. Cluster Sci., 2011, 22:525.
[61] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Phys. Conf. Ser., 2009, 176:012030.
[62] Ricca A, Bauschlicher J C W. J. Chem. Phys., 1997, 106:2317.
[63] Boroznina E V, Borkhoeva N N, Boroznin S V. J. Phys. Conf. Ser., 2015, 586:012007.
[64] Olson J K. Dissertation of Utah State University, 2010.
[65] Dash B P, Satapathy R, Maguire J A, Hosmane N S. New J. Chem., 2011, 35:1955.
[66] Liao R B, Zhu Y, Li Q H, Sa R J. Struct. Chem., 2015, 26:353.
[67] Pitochelli A R, Hawthorne F M. J. Am. Chem. Soc., 1960, 82:3228.
[68] Szwacki N G, Tymczak C. Nanoscale Res. Lett., 2012, 7:1.
[69] Schleyer P V R, Najafian K, Mebel A M. Inorg. Chem., 1998, 37:6765.
[70] McKee M L, Wang Z X, Schleyer P V R. J. Am. Chem. Soc., 2000, 122:4781.
[71] Liao R B, Tian Z M, Cui Y M, Sa R J. Struct. Chem., 2012, 23:1797.
[72] Avdeeva V V, Vologzhanina A V, Goeva L V, Malinina E A, Kuznetsov N T. Z. Anorg. Allg. Chem., 2014, 640:2149.
[73] Udovic T J, Matsuo M, Unemoto A, Verdal N, Stavila V, Skripov A V, Rush J J, Takamura H, Orimo S. Chem. Commun., 2014, 50:3750.
[74] Olson J K, Boldyrev A I. J. Phys. Chem. A, 2013, 117:1614.
[75] Li W L, Romanescu C, Jian T, Wang L S. J. Am. Chem. Soc., 2012, 134:13228.
[76] Böyükata M, Özdo D? an C, Güvenç Z B. Phys. Scr., 2008, 77:025602.
[77] Chen Q, Li S D. J. Cluster Sci., 2011, 22:513.
[78] Li D Z, Lu H G, Li S D. J. Mol. Model., 2012, 18:3161.
[79] Li D Z, Chen Q, Wu Y B, Lu H G, Li S D. Phys. Chem. Chem. Phys., 2012, 14:14769.
[80] Bai H, Chen Q, Zhao Y F, Wu Y B, Lu H G, Li J, Li S D. J. Mol. Model., 2013, 19:1195.
[81] Tian W J, Bai H, Lu H G, Wu Y B, Li S D. J. Cluster Sci., 2013, 24:1127.
[82] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Chem. Phys., 2008, 128:124304.
[83] Ohishi Y, Kimura K, Yamaguchi M, Uchida N, Kanayama T. J. Chem. Phys., 2010, 133:074305.
[84] Yu H L, Sang R L, Wu Y Y. J. Phys. Chem. A, 2009, 113:3382.
[85] Szwacki N G, Weber V, Tymczak C. Nanoscale Res. Lett., 2009, 4:1085.
[86] Olah G A, Prakash G K S, Rasul G. Proc. Natl. Acad. Sci. U. S. A., 2012, 109:6825.
[87] Lv J, Wang Y C, Zhang L J, Lin H Q, Zhao J J, Ma Y M. Nanoscale, 2015, 7:10482.
[88] Li Q S, Jin Q. J. Phys. Chem. A, 2004, 108:855.
[89] Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I. J. Chem. Phys., 2011, 135:104301.
[90] Alexandrova A N, Nechay M R, Lydon B R, Buchan D P, Yeh A J, Tai M H, Kostrikin I P, Gabrielyan L. Chem. Phys. Lett., 2013, 588:37.
[91] Wu Y Y, Zhao F Q, Ju X H. Comput. Theor. Chem., 2014, 1027:151.
[92] Xu C, Cheng L J, Yang J L. J. Chem. Phys., 2014, 141:124301.
[93] Cheng S B, Berkdemir C, Castleman A W. Phys. Chem. Chem. Phys., 2014, 16:533.
[94] Bai H, Chen Q, Zhai H J, Li S D. Angew. Chem. Int. Ed. Engl., 2015, 54:941.
[95] Chen Q, Gao T, Tian W J, Bai H, Zhang S Y, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2015, 17:19690.
[96] Fa W, Chen S, Pande S, Zeng X C. J. Phys. Chem. A, 2015, 119:11208.
[97] Jin P, Hou Q H, Tang C C, Chen Z F. Theor. Chem. Acc., 2015, 134.
[98] Chen Q, Li H R, Miao C Q, Wang Y J, Lu H G, Mu Y W, Ren G M, Zhai H J, Li S D. Phys. Chem. Chem. Phys., 2016, 18:11610.
[99] Tam N M, Pham H T, Duong L V, Pham-Ho M P, Nguyen M T. Phys. Chem. Chem. Phys., 2015, 17:3000.
[100] Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I. J. Phys. Chem. A, 2006, 110:1689.
[101] Zhai H J, Miao C Q, Li S D, Wang L S. J. Phys. Chem. A, 2010, 114:12155.
[102] Chen Q, Bai H, Zhai H J, Li S D, Wang L S. J. Chem. Phys., 2013, 139:044308.
[103] Chen Q, Zhai H J, Li S D, Wang L S. J. Chem. Phys., 2013, 138:084306.
[104] Zhao Y, Lusk M T, Dillon A C, Heben M J, Zhang S B. Nano Lett., 2008, 8:157.
[105] Li F, Zhao J J, Chen Z F. Nanotechnology, 2010, 21:134006.
[106] Jia J F, Ma L J, Wang J F, Wu H S. J. Mol. Model., 2013, 19:3255.
[107] Jia J F, Li X R, Li Y A, Ma L J, Wu H S. Comput. Theor. Chem., 2014, 1027:128.
[108] 王转玉(Wang Z Y), 康伟利(Kang W L), 贾建峰(Jia J F), 武海顺(Wu H S). 物理学报(Acta Phys. Sin.), 2014, 63:233102.
[109] Xie S Y, Li X B, Tian W Q, Chen N K, Zhang X L, Wang Y L, Zhang S B, Sun H B. Phys. Rev. B, 2014, 90.
[110] Zheng Q, Wagner F R, Ormeci A, Prots Y, Burkhardt U, Schmidt M, Schnelle W, Grin Y, Leithe-Jasper A. Chem.-Eur. J., 2015, 21:16532.
[111] Wu C, Wang H, Zhang J J, Gou G Y, Pan B C, Li J. ACS Appl. Mater. Interfaces, 2016, 8:2526.
[112] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G. Chin. Phys. B, 2014, 23:033101.
[113] 阮文(Ruan W), 余晓光(Yu X G), 谢安东(Xie A D), 伍冬兰(Wu D L), 罗文浪(Luo W L). 物理学报(Acta Phys. Sin.), 2014, 63:243101.
[114] Liao R B, Chai L L, Zhu Y. Int. J. Quantum Chem., 2015, 115:216.
[115] Muhammad S, Xu H L, Liao Y, Kan Y H, Su Z M. J. Am. Chem. Soc., 2009, 131:11833.
[116] Böyükata M, Güvenç Z B. Int. J. Hydrogen Energy, 2011, 36:8392.
[117] Li L F, Xu C, Cheng L J. Comput. Theor. Chem., 2013, 1021:144.
[118] Li L F, Xu C, Jin B K, Cheng L J. J. Chem. Phys., 2013, 139:174310.
[119] Hou J H, Duan Q, Qin J M, Shen X D, Zhao J X, Liang Q C, Jiang D Y, Gao S. RSC Adv., 2015, 5:38873.
[120] Li S D, Guo J C, Miao C Q, Ren G M. Angew. Chem. Int. Ed., 2005, 44:2158.
[121] Fokwa B P, Hermus M. Angew. Chem. Int. Ed., 2012, 51:1702.
[122] Mbarki M, St Touzani R, Fokwa B P. Angew. Chem. Int. Ed., 2014, 53:13174.
[123] Yuan Y, Cheng L J. J. Chem. Phys., 2013, 138:024301.
[124] Li L F, Xu C, Jin B K, Cheng L J. Dalton Trans., 2014, 43:11739.
[125] Mondal B, Mondal B, Pal K, Varghese B, Ghosh S. Chem. Commun., 2015, 51:3828.
[126] Islas R, Heine T, Ito K, Schleye P v R, Merino G. J. Am. Chem. Soc., 2007, 129:14767.
[127] Averkiev B B, Boldyrev A I. Russ. J. Gen. Chem., 2008, 78:769.
[128] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2011, 50:9334.
[129] Li W L, Ivanov A S, Federic J, Romanescu C, Cernusak I, Boldyrev A I, Wang L S. J. Chem. Phys., 2013, 139:104312.
[130] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. J. Chem. Phys., 2013, 138:134315.[FL)] [ST] [WT] [LM]
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[11] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[12] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[15] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.