English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1732-1742 DOI: 10.7536/PC160936 前一篇   后一篇

• 综述与评论 •

葫芦脲作为超分子纳米反应器/催化剂的研究

龚晚君, 赵智勇, 刘思敏*   

  1. 武汉科技大学化学与化工学院 武汉 430081
  • 收稿日期:2016-09-01 修回日期:2016-10-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 刘思敏,e-mail:liusimin@wust.edu.cn E-mail:liusimin@wust.edu.cn
  • 基金资助:
    国家自然科学基金(No.21472143)及“千人计划”青年项目资助

Cucurbituril-Based Supramolecular Nanoreactors/Catalysts

Gong Wanjun, Zhao Zhiyong, Liu Simin*   

  1. School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2016-09-01 Revised:2016-10-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21472143) and Thousand Youth Talents Program of China.
葫芦脲是近年来获得广泛关注和长足发展的一种新型超分子主体化合物,其刚性的结构、疏水性的空腔及电负性的端口赋予其极为特殊的识别性质——对有机阳离子客体的高选择性和高亲合性。过去的十几年里,学者们利用其独特的性质将其应用在包括从基本的分子识别与组装到复杂的三维材料的制备以及药物传输及缓释等各个领域中。此外,创造性地将葫芦脲分子用于控制化学反应进程则成为了葫芦脲化学又一备受瞩目的研究方向。本文介绍了葫芦脲及其衍生物作为超分子纳米反应器/催化剂的研究工作,重点介绍了近年来国际国内在此领域取得的部分研究成果,主要包括葫芦脲通过主客体作用对反应底物的反应活性的影响,希望能给对葫芦脲介入的化学反应感兴趣的研究人员提供参考。
Cucurbit[n] urils (CB[n] s), as a kind of rapidly developing supramolecular hosts, have been attracting more and more attentions. With their rigid structures, hydrophobic cavities and electronegative carbonyl groups on the portals, CB[n] s show their unique recognition properties——high selectivity and high binding affinity toward organic cations. In the past decade, CB[n] s have been utilized not only in basic recognition research but also in the construction of complicated three-dimensional materials and even in drug delivery systems. Besides, CB[n] s have been creatively used to control the reaction process and have obtained numerous successes. Herein, this review mainly describes the use of cucurbiturils as supramolecular nanoreactors/catalysts to accelerate or control the reaction process in thermal reactions as well as photoreactions. Moreover, the inhibition effect on guest's activity caused by the encapsulation inside cucurbiturils is also discussed.

Contents
1 Introduction
2 CB[n]s used as supramolecular nanoreactors/catalysts in thermal reactions
2.1 [3+2] cycloaddition reactions
2.2 Solvolysis reactions
2.3 Oxidation reactions
2.4 Other thermal reactions
3 [n]s used as supramolecular nanoreactors/catalysts in photoreactions
3.1 [2+2] cycloaddition reactions
3.2 [4+4] cycloaddition reactions
3.3 Other photoreactions
4 CB[n]s used as inhibiting agents
4.1 Protective agents
4.2 Toxicity inhibitors
4.3 Reaction inhibitors
5 Conclusion

中图分类号: 

()
[1] Breslow R. J. Biol. Chem., 2009, 284:1337.
[2] Turro N J. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:10766.
[3] Vriezema D M, Comellas A M, Elemans J A, Cornelissen J J, Rowan A E, Nolte R J. Chem. Rev., 2005, 105:1445.
[4] Davis A V, Yeh R M, Raymond K N. Proc. Natl. Acad. Sci. U.S.A., 2002, 99:4793.
[5] Tabushi I. Acc. Chem. Res., 1982, 15:66.
[6] Breslow R. Acc. Chem. Res., 1995, 28:146.
[7] Garcia H, Ferrer B. Metal Organic Frameworks as Heterogeneous Catalysts. 2013. 365.
[8] Cram D J, Cram J M. Container Molecules and Their Guests. Cambridge:The Royal Society of Chemistry, 1994.
[9] Zarra S, Wood D M, Roberts D A, Nitschke J R. Chem. Soc. Rev., 2015, 44:419.
[10] Yang Z, Ji H. ACS Sustain. Chem. Eng., 2013, 1:1172.
[11] Jiang H, Yang Z, Zhou X, Fang Y, Ji H. Chin. J. Chem. Eng., 2012, 20:784.
[12] Doyagüez E G, Rodríguez-Hernández J, Corrales G, Fernández-Mayoralas A, Gallardo A. Macromolecules, 2012, 45:7676.
[13] Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, Vavia P, Trotta F, Cavalli R. Int. J. Pharm., 2013, 443:262.
[14] Crupi V, Fontana A, Majolino D, Mele A, Melone L, Punta C, Rossi B, Rossi F, Trotta F, Venuti V. J. Inclusion Phenom.Macrocyclic Chem., 2014, 80:69.
[15] Crupi V, Fontana A, Giarola M, Longeville S, Majolino D, Mariotto G, Mele A, Paciaroni A, Rossi B, Trotta F, Venuti V. J. Phys. Chem. B, 2014, 118:624.
[16] Tejashri G, Amrita B, Darshana J. Acta Pharmaceutica, 2013, 63:335.
[17] Kang J, Rebek J. Nature, 1997, 385:50.
[18] Conn M M, Rebek J. Chem. Rev., 1997, 97:1647.
[19] Rebek J. Chem. Soc. Rev., 1996, 25:255.
[20] Yoshizawa M, Tamura M, Fujita M. J. Am. Chem. Soc., 2004, 126:6846.
[21] Pluth M D, Bergman R G, Raymond K N. Science, 2007, 316:85.
[22] Brown C J, Bergman R G, Raymond K N. J. Am. Chem. Soc., 2009, 131:17530.
[23] Wang Z J, Brown C J, Bergman R G, Raymond K N, Toste F D. J. Am. Chem. Soc., 2011, 133:7358.
[24] Wang Z J, Clary K N, Bergman R G, Raymond K N, Toste F D. Nat. Chem., 2013, 5:100.
[25] Kaphan D M, Levin M D, Bergman R G, Raymond K N, Toste F D. Science, 2015, 350:1235.
[26] Freeman W A, Mock W L, Shih N Y. J. Am. Chem. Soc., 1981, 103:2.
[27] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122:540.
[28] Liu S, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2005, 127:16798.
[29] Cheng X J, Liang L L, Chen K, Ji N N, Xiao X, Zhang J X, Zhang Y Q, Xue S F, Zhu Q J, Ni X L, Tao Z. Angew. Chem. Int. Ed., 2013, 52:7252.
[30] Li Q, Qiu S C, Zhang J, Chen K, Huang Y, Xiao X, Zhang Y, Li F, Zhang Y Q, Xue S F, Zhu Q J, Tao Z, Lindoy L F, Wei G. Org. Lett., 2016, 18:4020.
[31] Cao L, Sekutor M, Zavalij P Y, Mlinaric-Majerski K, Glaser R, Isaacs L. Angew. Chem. Int. Ed., 2014, 53:988.
[32] Han B H, Liu Y. Chin. J. Org. Chem., 2003, 23:139.
[33] Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed., 2005, 44:4844.
[34] Isaacs L. Chem. Commun., 2009, 619.
[35] Pemberton B C, Raghunathan R, Volla S, Sivaguru J. Chem.-Eur. J., 2012, 18:12178.
[36] Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X. RSC Adv., 2012, 2:1213.
[37] Liu Y, Yang H, Wang Z, Zhang X. Chem.-Asian J., 2013, 8:1626.
[38] Ni X L, Xiao X, Cong H, Liang L L, Cheng K, Cheng X J, Ji N N, Zhu Q J, Xue S F, Tao Z. Chem. Soc. Rev., 2013, 42:9480.
[39] Barrow S J, Kasera S, Rowland M J, Del Barrio J, Scherman O A. Chem. Rev., 2015, 115:12320.
[40] Assaf K I, Nau W M. Chem. Soc. Rev., 2015, 44:394.
[41] Liu Y, Yang H, Wang Z, Zhang X. Chem.-Asian J., 2013, 8:1626.
[42] Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2005, 127:15959.
[43] Liu S, Zavalij P Y, Lam Y F, Isaacs L. J. Am. Chem. Soc., 2007, 129:11232.
[44] Liu S, Wu X, Huang Z, Yao J, Liang F, Wu C. J. Inclusion Phenom.Macrocyclic Chem., 2004, 50:203.
[45] Cong H, Tao Z, Xue S F, Zhu Q J. Curr. Org. Chem., 2011, 15:86.
[46] Mock W L, Irra T A, Wepsiec J P, Adhya M. J. Org. Chem., 1989, 54:5302.
[47] Tuncel D, Steinke J H. Chem. Commun., 2002, 496.
[48] Tuncel D, Cindir N, Koldemir U. J. Inclusion Phenom.Macrocyclic Chem., 2006, 55:373.
[49] Tuncel D, Oezsar O, Tiftik H B, Salih B. Chem. Commun., 2007, 1369.
[50] Krasia T C, Steinke J H. Chem. Commun., 2002, 22.
[51] Wang K, Yee C C, Au-Yeung H Y. Chem. Sci., 2016, 7:2787.
[52] Ke C, Smaldone R A, Kikuchi T, Li H, Davis A P, Stoddart J F. Angew. Chem. Int. Ed., 2013, 52:381.
[53] Ke C, Strutt N L, Li H, Hou X, Hartlieb K J, Mcgonigal P R, Ma Z, Iehl J, Stern C L, Cheng C, Zhu Z, Vermeulen N A, Meade T J, Botros Y Y, Stoddart J F. J. Am. Chem. Soc., 2013, 135:17019.
[54] Hou X, Ke C, Cheng C, Song N, Blackburn A K, Sarjeant A A, Botros Y Y, Yang Y W, Stoddart J F. Chem. Commun., 2014, 50:6196.
[55] Finbloom J A, Slack C C, Bruns C J, Jeong K, Wemmer D E, Pines A, Francis M B. Chem. Commun., 2016, 52:3119.
[56] Hou X S, Ke C F, Bruns C J, Mcgonigal P R, Pettman R B, Stoddart J F. Nat. Commun., 2015, 6:9.
[57] Basilio N, Garcia-Rio L, Moreira J A, Pessego M. J. Org. Chem., 2010, 75:848.
[58] Klock C, Dsouza R N, Nau W M. Org. Lett., 2009, 11:2595.
[59] Cong H, Zhao F F, Zhang J X, Zeng X, Tao Z, Xue S F, Zhu Q J. Catal. Commun., 2009, 11:167.
[60] Wang Y H, Cong H, Zhao F F, Xue S F, Tao Z, Zhu Q J, Wei G. Catal. Commun., 2011, 12:1127.
[61] Cong H, Li Z J, Wang Y H, Tao Z, Yamato T, Xue S F, Wei G. J. Mol. Catal. A:Chem., 2013, 374:32.
[62] Cong H, Chen Q, Geng Q, Tao Z, Yamato T. Chin. J. Chem., 2015, 33:545.
[63] Cong H, Yamato T, Tao Z. J. Mol. Catal. A:Chem., 2013, 379:287.
[64] Cong H, Yamato T, Tao Z. New J. Chem., 2013, 37:3778.
[65] Cao M, Lin J, Yang H, Cao R. Chem. Commun., 2010, 46:5088.
[66] Cao M, Wu D, Gao S, Cao R. Chem.-Eur. J., 2012, 18:12978.
[67] Zhao G, Wang Z, Wang R, Li J, Zou D P, Wu Y J. Tetrahedron Lett., 2014, 55:5319.
[68] Reddy K R K K, Cavallini T S, Demets G J F, Silva L F. New J. Chem., 2014, 38:2262.
[69] Bruno S M, Gomes A C, Oliveira T S M, Antunes M M, Lopes A D, Valente A A, Goncalves I S, Pillinger M. Org. Biomol. Chem., 2016, 14:3873.
[70] Zheng L, Sonzini S, Ambarwati M, Rosta E, Scherman O A, Herrmann A. Angew. Chem. Int. Ed., 2015, 54:13007.
[71] Sashuk V, Butkiewicz H, Fialkowski M, Danylyuk O. Chem. Commun., 2016, 52:4191.
[72] Jiao Y, Li W L, Xu J F, Wang G, Li J, Wang Z, Zhang X. Angew. Chem. Int. Ed., 2016, 55:8933.
[73] Jon S Y, Ko Y H, Park S H, Kim H J, Kim K. Chem. Commun., 2001, 1938.
[74] Pattabiraman M, Natarajan A, Kaliappan R, Mague J T, Ramamurthy V. Chem. Commun., 2005, 4542.
[75] Pattabiraman M, Natarajan A, Kaanumalle L S, Ramamurthy V. Org. Lett., 2005, 7:529.
[76] Pattabiraman M, Kaanumalle L S, Natarajan A, Ramamurthy V. Langmuir, 2006, 22:7605.
[77] Maddipatla M V, Kaanumalle L S, Natarajan A, Pattabiraman M, Ramamurthy V. Langmuir, 2007, 23:7545.
[78] Maddipatla M V S N, Pattabiraman M, Natarajan A, Srivastav K, Mague J T, Ramamurthy V. Org. Biomol. Chem., 2012, 10:9219.
[79] Gromov S P, Vedernikov A I, Kuz'mina L G, Kondratuk D V, Sazonov S K, Strelenko Y A, Alfimov M V, Howard J a K. Eur. J. Org. Chem., 2010, 2010:2587.
[80] Barooah N, Pemberton B C, Johnson A C, Sivaguru J. Photochem. Photobiol. Sci., 2008, 7:1473.
[81] Wu X L, Luo L, Lei L, Liao G H, Wu L Z, Tung C H. J. Org. Chem., 2008, 73:491.
[82] Chen B, Cheng S F, Liao G H, Li X W, Zhang L P, Tung C H, Wu L Z. Photochem. Photobiol. Sci., 2011, 10:1441.
[83] Lei L, Luo L, Wu X L, Liao G H, Wu L Z, Tung C H. Tetrahedron Lett., 2008, 49:1502.
[84] Yang H, Ma Z, Wang Z, Zhang X. Polym. Chem., 2014, 5:1471.
[85] Yang H, Liu Y, Liu K, Yang L, Wang Z, Zhang X. Langmuir, 2013, 29:12909.
[86] Yang C, Mori T, Origane Y, Ko Y H, Selvapalam N, Kim K, Inoue Y. J. Am. Chem. Soc., 2008, 130:8574.
[87] Biedermann F, Ross I, Scherman O A. Polym. Chem., 2014, 5:5375.
[88] Wang R, Yuan L, Macartney D H. J. Org. Chem., 2006, 71:1237.
[89] Smitka J, Lemos A, Porel M, Jockusch S, Belderrain T R, Tesarova E, Da-Silva J P. Photochem. Photobiol. Sci., 2014, 13:310.
[90] Saleh N, Koner A L, Nau W M. Angew. Chem. Int. Ed., 2008, 47:5398.
[91] Cong H, Li C R, Xue S F, Tao Z, Zhu Q J, Wei G. Org. Biomol. Chem., 2011, 9:1041.
[92] Ren H, Huang Z, Yang H, Xu H, Zhang X. ChemPhysChem, 2015, 16:523.
[93] Berbeci L S, Wang W, Kaifer A E. Org. Lett., 2008, 10:3721.
[94] Oun R, Floriano R S, Isaacs L, Rowan E G, Wheate N J. Toxicol. Res., 2014, 3:447.
[95] Li S, Chen H, Yang X, Bardelang D, Wyman I W, Wan J, Lee S M Y, Wang R. ACS Med. Chem. Lett., 2015, 6:1174.
[96] Ma D, Zhang B, Hoffmann U, Sundrup M G, Eikermann M, Isaacs L. Angew. Chem. Int. Ed., 2012, 51:11358.
[97] Hoffmann U, Grosse-Sundrup M, Eikermann-Haerter K, Zaremba S, Ayata C, Zhang B, Ma D, Isaacs L, Eikermann M. Anesthesiology, 2013, 119:317.
[98] Miskolczy Z, Megyesi M, Tarkanyi G, Mizsei R, Biczok L. Org. Biomol. Chem., 2011, 9:1061.
[99] Masson E, Shaker Y M, Masson J P, Kordesch M E, Yuwono C. Org. Lett., 2011, 13:3872.
[100] Parente-Carvalho C, Norouzy A, Ribeiro V, Nau W M, Pischel U. Org. Biomol. Chem., 2015, 13:2866.
[101] Yang H, Liu Y, Yang L, Liu K, Wang Z, Zhang X. Chem. Commun., 2013, 49:3905.
[102] 董运红(Dong Y H), 曹利平(Cao L P). 化学进展(Progross in Chemistry), 2016, 28:1039.
[103] Li Q, Qiu S C, Chen K, Zhang Y, Wang R, Huang Y, Tao Z, Zhu Q J, Liu J X. Chem. Commun., 2016, 52:2589.
[104] Liu S, Shukla A D, Gadde S, Wagner B D, Kaifer A E, Isaacs L. Angew. Chem. Int. Ed., 2008, 47:2657.
[105] Gong W, Yang X, Zavali P Y, Isaacs L, Zhao Z, Liu S. Chem.-Eur.J., 2016, 22:17612.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.