English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1743-1752 DOI: 10.7536/PC160441 前一篇   后一篇

• 综述与评论 •

颗粒膜的结构及对乳状液稳定性的影响机制

黄翔峰, 娜雅, 熊永娇, 王旭慧, 彭开铭*   

  1. 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
  • 收稿日期:2016-04-01 修回日期:2016-06-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 彭开铭,e-mail:kai878@sina.com E-mail:kai878@sina.com
  • 基金资助:
    国家自然科学基金项目(No.51478325)资助

Structure Characterization of Particle Film and Its Role in Stabilizing Emulsion

Huang Xiangfeng, Na Ya, Xiong Yongjiao, Wang Xuhui, Peng Kaiming*   

  1. College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
  • Received:2016-04-01 Revised:2016-06-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51478325).
以颗粒膜为基础的乳液因广泛应用于油田、造纸、食品、化妆品、医药等领域而备受关注。本文归纳了在油水界面形成颗粒膜的颗粒密度、粒径及润湿性等特征,并阐述了颗粒在界面吸附扩散的行为。重点从颗粒垂直于界面的分配及方向,颗粒在界面内的排列及进一步形成的空间结构综述颗粒膜结构。总结了颗粒在界面的状态及颗粒膜结构的影响因素,并从能量及力学角度进行分析。颗粒膜对乳状液稳定性影响机制主要体现在颗粒膜的结构及界面黏弹性:颗粒膜的结构阻隔液滴之间的碰撞聚并,这是乳状液稳定的基础;同时,颗粒膜通过改变界面黏弹性使得液滴在运动、碰撞、絮凝时不会轻易崩溃,从而强化了乳状液的稳定性。固体颗粒为乳化剂形成颗粒膜稳定乳状液的机制探究为稳定乳状液制备以及乳状液的破乳提供理论依据,具有现实意义。最后,本文就颗粒膜稳定乳状液的机制研究展望了其未来发展方向及可能的解决途径。
Particle film (particulate film or granular film) based emulsions have attracted great attention because they are widely used in oil, paper, food, cosmetics, pharmaceuticals and other fields. This paper summarizes the characteristics of film-forming particles on the oil-water interface such as density, size and wettability, and expounds the adsorption and diffusion of particles on the oil-water interface. The structures of particle film are highlighted, including the distribution and orientation of particles perpendicular to the interface, the arrangement of particles on the oil-water interface and the spatial structures of film. The influencing factors of the state of particles on the oil-water interface as well as the particle film structures are summed up, then the nature of them is analyzed from the aspects of energy and mechanics. The mechanism of particle film stabilizing emulsion is elucidated from the structures of particle film and the interfacial viscoelasticity. The particle film hinders the collision and coalescence between the dispersed droplets, which is the basis of stable emulsions. Meanwhile, strengthened interfacial viscoelasticity makes sure the particle film will not easily collapse during dispersed droplets' movement, collision and flocculation. The mechanism of solid particles stabilizing emulsion as emulsifiers provides a theoretical basis for not only the preparation of stable emulsions but also the demulsification of emulsions, which is of important realistic significance. At last, we propose prospects of future development and possible solutions of the study on the mechanism of particle film stabilizing emulsion.

Contents
1 Introduction
2 The formation of particle film
2.1 The sources of particles
2.2 The characteristics of particles
2.3 The adsorption and diffusion of particles on the oil-water interface
3 The structures of particle film
3.1 Distribution and orientation of particles perpendicular to the interface
3.2 Arrangement of particles on the oil-water interface
3.3 Spatial structures of particle film
4 The mechanism of particle film stabilizing emulsion
4.1 The impact of particle film’s structures on emulsion stability
4.2 The impact of interface viscoelasticity on emulsion stability
5 Conclusion

中图分类号: 

()
[1] Ramsden W. Proc. R. Soc. London, 1903, 72:156.
[2] Pickering S U. J. Chem. Soc. Trans., 1907, 91:1981.
[3] 杨飞(Yang F), 王君(Wang J), 蓝强(Lan Q), 孙德军(Sun D J), 李传宪(Li C X). 化学进展(Progress in Chemistry), 2009, 21(7/8):1418.
[4] Mahendran V, Philip J. Sens. Actuators B, 2013, 185(8):488.
[5] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327(5961):68.
[6] Shen X T, Bonde J S, Kamra T, Bulow L, Leo J C, Linke D, Ye L. Angew. Chem. Int. Ed., 2014, 53(40):10687.
[7] Chevalier Y, Bolzinger M A. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2013, 439:23.
[8] Lam S, Velikov K P, Velev O D. Curr. Opin. Colloid Interface Sci., 2014, 19(5):490.
[9] Tang J T, Quinlan P J, Tam K C. Soft Matter, 2015, 11(18):3512.
[10] 陈馥(Chen F), 艾加伟(Ai J W), 罗陶涛(Luo T T), 陶怀志(Tao H Z), 陈俊斌(Chen J B). 精细化工(Fine Chemicals), 2014, 31(1):1.
[11] Luu X C, Yu J, Striolo A. Langmuir, 2013, 29(24):7221.
[12] Park B J, Lee B, Yu T. Soft Matter, 2014, 10(48):9675.
[13] Parolini L, Law A D, Maestro A, Buzza D M A, Cicuta P. J. Phys.:Condens. Matter, 2015, 27(19):194119.
[14] Bykov A G, Loglio G, Miller R, Noskov B A. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2015, 485:42.
[15] Powell K C, Chauhan A. Langmuir, 2014, 30(41):12287.
[16] Rayner M, Marku D, Eriksson M, Sjöö M, Dejmek P, Wahlgren M. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2014, 458:48.
[17] Liang F X, Shen K, Qu X Z, Zhang C L, Wang Q A, Li J L, Liu J G, Yang Z Z. Angew. Chem. Int. Ed., 2011, 50(10):2379.
[18] Chen Y, Liang F X, Yang H L, Zhang C L, Wang Q, Qu X Z, Li J L, Cai Y L, Qiu D, Yang Z Z. Macromolecules, 2012, 45(3):1460.
[19] Deng R H, Liang F X, Zhou P, Zhang C L, Qu X Z, Wang Q, Li J L, Zhu J T, Yang Z Z. Adv. Mater., 2014, 26(26):4469.
[20] Luu X C, Striolo A. J. Phys. Chem. B, 2014, 118(47):13737.
[21] De Folter J W J, Hutter E M, Castillo S I R, Klop K E, Philipse A P, Kegel W K. Langmuir, 2014, 30(4):955.
[22] Wang F W, Liu H R, Zhang Y, Liu H W, Ge X W, Zhang X Y. J. Polym. Sci. Part A:Polym. Chem., 2014, 52(3):339.
[23] Wang F W, Liu H R, Zhang J D, Zhou X T, Zhang X Y. J. Polym. Sci. Part A:Polym. Chem., 2012, 50(22):4599.
[24] 易成林(Yi C L), 杨逸群(Yang Y Q), 江金强(Jiang J Q), 刘晓亚(Liu X Y), 江明(Jiang M). 化学进展(Progress in Chemistry), 2011, 23(1):65.
[25] Tarimala S, Wu C Y, Dai L L. Langmuir, 2006, 22(18):7458.
[26] Tambe D E, Sharma M M. J. Colloid Interface Sci., 1993, 157(1):244.
[27] Yamanaka K, Nishino S, Naoe K, Imai M. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2013, 436:18.
[28] Lee K Y, Blaker J J, Murakami R, Heng J Y Y, Bismarck A. Langmuir, 2014, 30(2):452.
[29] Zhou J, Qiao X Y, Binks B P, Sun K, Bai M W, Li Y L, Liu Y. Langmuir, 2011, 27(7):3308.
[30] French D J, Taylor P, Fowler J, Clegg P S. J. Colloid Interface Sci., 2015, 441:30.
[31] Chen G, Tan P, Chen S, Huang J, Wen W, Xu L. Phys. Rev. Lett., 2013, 110(6):640.
[32] Kaptay G. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2006, 282:387.
[33] Horozov T S, Binks B P, Aveyard R, Clint J H. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2006, 282:377.
[34] Hunter T N, Pugh R J, Franks G V, Jameson G J. Adv. Colloid Interface Sci., 2008, 137(2):57.
[35] Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7(1/2):21.
[36] Binks B P, Rodrigues J A. Angew. Chem. Int. Ed., 2005, 44(3):441.
[37] Monteillet H, Workamp M, Appel J, Kleijn J M, Leermakers F A M, Sprakel J. Adv. Mater. Interfaces, 2014, 1(7):1300121.
[38] 黄维安(Huang W A), 蓝强(Lan Q), 张妍(Zhang Y). 化学进展(Progress in Chemistry), 2007, 19(2):212.
[39] Dai L L, Tarimala S, Wu C Y, Guttula S, Wu J. Scanning, 2008, 30(2):87.
[40] Rezvantalab H, Drazer G, Shojaei-Zadeh S. J. Chem. Phys., 2015, 142(1):014701.
[41] Kang K, Hong J S, Dhont J K G. J. Phys. Chem. C, 2014, 118(42):24803.
[42] 杨飞(Yang F). 山东大学博士毕业论文(Doctoral Dissertation of Shandong University), 2007.
[43] Wongkongkatep P, Manopwisedjaroen K, Tiposoth P, Archakunakorn S, Pongtharangkul T, Suphantharika M, Honda K, Hamachi I, Wongkongkatep J. Langmuir, 2012, 28(13):5729.
[44] Paunov V N, Cayre O J, Noble P F, Stoyanov S D, Velikov K P, Golding M. J. Colloid Interface Sci., 2007, 312(2):381.
[45] Snoeyink C, Barman S, Christopher G F. Langmuir, 2015, 31(3):891.
[46] Binks B P, Isa L, Tyowua A T. Langmuir, 2013, 29(16):4923.
[47] Morgan A R, Ballard N, Rochford L A, Nurumbetov G, Skelhon T S, Bon S A F. Soft Matter, 2013, 9(2):487.
[48] Gao H M, Lu Z Y, Liu H, Sun Z Y, An L J. J. Chem. Phys., 2014, 141(13):134907.
[49] Park B J, Lee D. ACS Nano, 2012, 6(1):782.
[50] Ballard N, Bon S A F. J. Colloid Interface Sci., 2015, 448:533.
[51] Tarimala S, Ranabothu S R, Vernetti J P, Dai L L. Langmuir, 2004, 20(13):5171.
[52] Tarimala S, Dai L L. Langmuir, 2004, 20(9):3492.
[53] Park B J, Lee D. Small, 2015, 11(35):4560.
[54] Horozov T S, Binks B P. Angew. Chem. Int. Ed., 2006, 45(5):773.
[55] Petkov P V, Danov K D, Kralchevsky P A. Langmuir, 2014, 30(10):2768.
[56] Vogel N, Retsch M, Fustin C A, del Campo A, Jonas U. Chem. Rev., 2015, 115(13):6265.
[57] Basavaraj M G, Fuller G G, Fransaer J, Vermant J. Langmuir, 2006, 22(15):6605.
[58] Lee M, Lee D, Park B J. Soft Matter, 2015, 11(2):318.
[59] 丁鹏翔(Ding P X), 刘温霞(Liu W X). 纸和造纸(Paper and Paper Making), 2010, 29(4):43.
[60] Geisel K, Henzler K, Guttmann P, Richtering W. Langmuir, 2015, 31(1):83.
[61] Zou Y, Guo J, Yin S W, Wang J M, Yang X Q. J. Agric. Food. Chem., 2015, 63(33):7405.
[62] Vella D, Aussillous P, Mahadevan L. Europhys. Lett., 2004, 68(2):212.
[63] Kassuga T D, Rothstein J P. J. Colloid Interface Sci., 2015, 448:287.
[64] Poulichet V, Garbin V. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(19):5932.
[65] Razavi S, Cao K D, Lin B H, Lee K Y C, Tu R S, Kretzschmar I. Langmuir, 2015, 31(28):7764.
[66] Aranberri I, Binks B P, Clint J H, Fletcher P D I. J. Porous Mater., 2009, 16(4):429.
[67] 陈浩(Chen H), 张晓优(Zhang X Y), 徐樟浩(Xu Z H), 赵杰(Zhao J). 非金属矿(Non-Metallic Mines), 2013, 36(3):13.
[68] Saha A, John V T, Bose A. ACS Appl. Mater. Interfaces, 2015, 7(38):21010.
[69] 谢玉银(Xie Y Y), 侯吉瑞(Hou J R), 张建忠(Zhang J Z), 谢东海(Xie D H), 任飞(Ren F), 张玥(Zhang Y). 油气地质与采收率(Petroleum Geology and Recovery Efficiency), 2014, 21(1):74.
[70] Li Z F, Harbottle D, Pensini E, Ngai T, Richtering W, Xu Z H. Langmuir, 2015, 31(23):6282.
[71] Fan Y R, Simon S, Sjoblom J. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2010, 366(1):120.
[72] Whitby C P, Fornasiero D, Ralston J, Liggieri L, Ravera F. J. Phys. Chem. C, 2012, 116(4):3050.
[73] Wang Y Y, Zhang L, Sun T L, Zhao S, Yu J Y. J. Colloid Interface Sci., 2004, 270(1):163.
[74] 侯吉瑞(Hou J R), 谢玉银(Xie Y Y), 赵凤兰(Zhao F L), 谢东海(Xie D H), 马云飞(Ma Y F), 苑玉静(Yuan Y J). 油气地质与采收率(Petroleum Geology and Recovery Efficiency), 2015, 22(1):68.
[75] Tambe D E, Sharma M M. J. Colloid Interface Sci., 1991, 147(1):137.
[76] Kang Z, Yeung A, Foght J M, Gray M R. Colloids Surf. B, 2008, 62(2):273.
[77] 田鹏飞(Tian P F), 刘温霞(Liu W X). 应用化学(Chinese Journal of Applied Chemistry), 2008, 25(11):1271.
[78] Pensini E, Harbottle D, Yang F, Tchoukov P, Li Z, Kailey I, Behles J, Masliyah J, Xu Z. Energy Fuels, 2014, 28(11):6760.
[79] Huang X F, Liu J, Lu L J, Wen Y, Xu J C, Yang D H, Zhou Q. Bioresour. Technol., 2009, 100(3):1358.
[80] Huang X F, Peng K M, Lu L J, Wang R F, Liu J. Environ. Sci. Technol., 2014, 48(5):3056.
[81] Peng K M, Liu J, Lu L J, Yin W, Huang X F. J. Adhes. Sci. Technol., 2016, 30(2):194.
[82] Wen Y, Cheng H, Lu L J, Liu J, Feng Y, Guan W, Zhou Q, Huang X F. Bioresour. Technol., 2010, 101(21):8315.
[83] Frostad J M, Collins M C, Leal L G. Langmuir, 2013, 29(15):4715.
[84] Lin F, He L, Primkulov B, Xu Z. J. Phys. Chem. C, 2014, 118(25):13552.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[7] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[8] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[9] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[10] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[11] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[14] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[15] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.