English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1753-1761 DOI: 10.7536/PC160433 前一篇   后一篇

• 综述与评论 •

沸石咪唑酯骨架材料用于水中污染物的去除

范功端1,2*, 林茹晶1, 苏昭越1, 许仁星1   

  1. 1. 福州大学土木工程学院 福州 350108;
    2. 福州大学新能源材料研究所 福州 350108
  • 收稿日期:2016-04-01 修回日期:2016-06-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 范功端,e-mail:fgdfz@fzu.edu.cn E-mail:fgdfz@fzu.edu.cn
  • 基金资助:
    中国博士后科学基金项目(No.2014M561856)和国家自然科学基金项目(No.21303020,51308123)资助

Removing Water Contaminants Using Zeolitic Imidazolate Frameworks

Fan Gongduan1,2*, Lin Rujing1, Su Zhaoyue1, Xu Renxing1   

  1. 1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China;
    2. Institute of Advanced Energy Materials, Fuzhou University, Fuzhou 350108, China
  • Received:2016-04-01 Revised:2016-06-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Science Foundation for Post-doctoral Scientists of China (No.2014M561856)and the National Natural Science Foundation of China(No.21303020,51308123).
当前水污染问题严重制约了国民经济和社会的发展,对水污染的控制与治理具有重大研究意义且刻不容缓。沸石咪唑酯骨架结构材料(zeolitic imidazolate frameworks,ZIFs)作为新兴化学与材料科学相结合产物,凭借其结构稳定、比表面积大和性能优良等特点在全球范围内受到广泛关注,并逐步应用于去除水中的污染物。本文以ZIF-8为代表,综述沸石咪唑酯骨架材料去除水中污染物的研究与进展,系统介绍了其作为吸附剂及光催化剂对水中污染物的去除效果,总结了ZIFs制备条件和环境因素对其去除水中污染物的影响,并对今后的研究进行了展望,以期为ZIFs材料应用于实际污染水体的处理提供理论支撑。
The vigorous increase of the frequency of water pollution has become serious bottlenecks constraining national economy and modern industry development. Therefore, the research on the control and treatment of water contaminants is of great significance and urgency. Zeolitic imidazolate frameworks (ZIFs), as a product of chemical and material science that have been rapidly developing in recent years, have received extensive attention around the world and have been applied to waste water treatment owing to their stable structure, high surface area and excellent performance. Taking the ZIF-8 as the representative, this paper reviews the research and development on the application of ZIFs to remove water contaminants. The performance of the ZIFs in removal of water contaminants as the adsorbent and photocatalyst is introduced systematically, the factors influencing water contaminants removal by ZIFs are summed up. Moreover, it has carried on the forecast to later period's research. The objective of this paper is to provide theoretical reference for the practical application of ZIFs to the treatment of real waste water.

Contents
1 Introduction
2 Effect of ZIFs on the removal of water contaminants
2.1 Removal efficiency of ZIFs as adsorbent for water contaminants
2.2 Removal efficiency of water contaminants by ZIFs used as photocatalyst
3 Factors influencing removal of water contaminants by ZIFs
3.1 Preparation of ZIFs for the removal of water contaminants
3.2 Environmental impact of ZIFs on the removal of water contaminants
4 The mechanism of water contaminants removal by ZIFs
4.1 ZIFs as adsorbent
4.2 ZIFs as photocatalyst
5 Conclusions

中图分类号: 

()
[1] Shannon M, Bohn P, Elimelech M, Georgiadis J, Marinas B, Mayes A. Nature, 2008, 452(7185):301.
[2] Montgomery M A, Elimelech M. Environmental Science and Technology, 2007, 41(1):16.
[3] Samrani A G E, Lartiges B S, Ras F V. Water Research, 2008, 42(4/5):951.
[4] Marco P, Carlo S, Giacomo C. Resources, Conservation and Recycling, 1999, 27(4):299.
[5] Ku Y, Jung N. Water Research, 2001, 35(1):135.
[6] Alyüz B, Veli S. Journal of Hazardous Materials, 2009, 167(1/3):482.
[7] Huisman J L, Schouten G, Schultz C. Hydrometallurgy, 2006, 83(1/4):106.
[8] Kurniawan T A, Chan G Y S, Lo W, Babel S. Chemical Engineering Journal, 2006, 118(1/2):83.
[9] Da,browski A, Hubicki Z, Podko Ds' cielny P, Robens E. Chemosphere, 2004, 56(2):91.
[10] James S L. Chemical Society Reviews, 2003, 32(5):276.
[11] Khan N A, Hasan Z, Jhung S H. Journal of Hazardous Materials, 2013, s244/245(2):444.
[12] Millange F, Serre C, Férey G. Chemical Communications, 2002, (8):822.
[13] Wang B, Côté A P, Furukawa H, O'Keeffe M, Yaghi O M. Nature, 2008, 543(7192):207.
[14] Barthelet K, Marrot J, Riou D, Ferey G. Angewandte Chemie, 2002, 114(2):291.
[15] Ma S, Zhou H. Journal of the American Chemical Society, 2006, 128(36):11734.
[16] Huang Y, Zhang Y, Chen X, Wu D, Yi Z, Cao R. Chemical Communications, 2014, 50(70):10115.
[17] Ariga K, Ito H, Hill J P, Tsukube H. Chemical Society Reviews, 2012, (41):5800.
[18] Bhattacharjee S, Lee Y, Puthiaraj P, Cho S, Ahn W. Catalysis Surveys from Asia, 2015, 19(4):203.
[19] Zhao M, Ou S, Wu C. Accounts of Chemical Research, 2014, 47(4):1199.
[20] Zhu X, Zheng H, Wei X, Lin Z, Guo L, Qiu B, Chen G. Chemical Communications, 2013, 49(13):1276.
[21] Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Coordination Chemistry Reviews, 2016, 307(Part2):361.
[22] Su C, Dong Y. Journal of Solid State Chemistry, 2015, 223:1.
[23] 任晓倩(Ren X Q),李锐(Li R),宋玉娜(Song Y N),冯霄(Feng X),王博(Wang B). 中国科学:化学(Scientia Sinica Chimica), 2014, 44(10):1521.
[24] Venna S R, Jasinski J B, Carreon M A. Journal of the American Chemical Society, 2010, 132(51):18030.
[25] 吴有根(Wu Y G),么雪梅(Yao X M),赵彦英(Zhao Y Y). 读写算(教育教学研究)(Duyuxie), 2015, (28):88.
[26] Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27):10186.
[27] Moggach S A, Bennett T D, Cheetham A K. Angewandte Chemie (International Edition in English), 2009, 48(38):7087.
[28] 郭方方(Guo F F).北京化工大学硕士论文(Master Dissertation of Beijing University of Chemical Technology).2015.
[29] Kang X, Song Z, Shi Q, Dong J. Asian Journal of Chemistry, 2013, 25(15):8324.
[30] Jung B K, Hasan Z, Jhung S H. Chemical Engineering Journal, 2013, 234(12):99.
[31] Bakhtiari N, Azizian S, Alshehri S M, Torad N L, Malgras V, Yamauchi Y. Microporous and Mesoporous Materials, 2015, 217:173.
[32] Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. Journal of the American Chemical Society, 2009, 131(43):15834.
[33] Ge D, Lee H K. Journal of Chromatography A, 2011, 1218(47):8490.
[34] Khan N A, Jung B K, Hasan Z, Jhung S H. J. Hazard. Mater., 2015, 282:194.
[35] Wu Y, Zhou M, Zhang B, Wu B, Li J, Qiao J, Guan X, Li F. Nanoscale, 2014, 6(2):1105.
[36] Wu C, Xiong Z, Li C, Zhang J. RSC Adv., 2015, 5(100):82127.
[37] Lin K A, Chang H. Water, Air, & Soil Pollution, 2015, 226(2):10.
[38] Jiang J, Yang C, Yan X. ACS Applied Materials & Interfaces, 2013, 5(19):9837.
[39] Jian M, Liu B, Zhang G, Liu R, Zhang X. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 465(1):67.
[40] Jiang X, Chen H, Liu L, Qiu L, Jiang X. Journal of Alloys and Compounds, 2015, 646:1075.
[41] Hao L, Liu X, Wang J, Wang C, Wu Q, Wang Z. Talanta, 2015, 142:104.
[42] Wang Y, Jin S, Wang Q, Lu G, Jiang J, Zhu D. Journal of Chromatography A, 2013, 1291(1042):27.
[43] Li J, Wu Y, Li Z, Zhang B, Zhu M, Hu X, Zhang Y, Li F. The Journal of Physical Chemistry C, 2014, 118(47):27382.
[44] Da Silva J J D F, Malo D L, Bataglion G A, Eberlin M N, Ronconi C M, Alves J S, de Sá G F. PloS One, 2015, 10(6):e0128436.
[45] He L, Li L, Wang T, Gao H, Li G, Wu X, Su Z, Wang C. Dalton Transactions, 2014, 43(45):16981.
[46] Zhang Y, Li G, Lu H, Lv Q, Sun Z. RSC Adv., 2014, 4:7594.
[47] Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. CrystEngComm, 2014, 16:4919.
[48] Jiang H, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Journal of the American Chemical Society, 2009, 131(32):11302.
[49] Wee L H, Janssens N, Sree S P, Wiktor C, Gobechiya E, Fischer R A, Kirschhock C E A, Martens J A. Nanoscale, 2014, (6):2056.
[50] Badaeva E, Isborn C, Feng Y, Ochsenbein S, Gamelin D. Journal of Physical Chemistry C, 2009, 113(20):8710.
[51] Yu B, Wang F, Dong W, Hou J, Lu P, Gong J. Materials Letters, 2015, 156:50.
[52] Isimjan T T, Kazemian H, Rohani S, Ray A K. Journal of Materials Chemistry, 2010, 20(45):10241.
[53] Chen L, Peng Y, Wang H, Gu Z, Duan C. Chem.Comm., 2014, 50:8651.
[54] Chandra R, Mukhopadhyay S, Nath M. Materials Letters, 2016, 164:571.
[55] Biswal B P, Shinde D B, Pillai V K, Banerjee R. Nanoscale, 2013, 5(21):10556.
[56] Gao S, Liu W, Shang N, Feng C, Wu Q, Wang Z, Wang C. RSC Adv., 2014, 4(106):61736.
[57] Liu S, Xiang Z, Hu Z, Zheng X, Cao D. Journal of Materials Chemistry, 2011, 21(18):6649.
[58] Liu J X, Li R, Wang Y F, Wang Y W, Zhang X C, Fan C M. J. Alloys Compd., 2017, 693:543.
[59] Bao Q, Lou Y, Xing T, Chen J. Inorganic Chemistry Communications, 2013, 37(6):170.
[60] Shi Q, Chen Z, Song Z, Li J, Dong J. Angewandte Chemie International Edition, 2011, 50(3):672.
[61] Chen B, Zhao X, Putkham A, Hong K, Lobkovsky E B, Hurtado E J, Fletcher A J, Thomas K M. Journal of the American Chemical Society, 2008, 130(20):6411.
[62] Qi Y, Luo F, Che Y, Zheng J. Crystal Growth & Design, 2008, 8(2):606.
[63] Kida K, Okita M, Fujita K, Tanaka S, Miyakeab Y. CrystEngComm, 2013, 15(9):1794.
[64] Tian Y, Zhao Y, Chen Z, Zhang G, Weng L, Zhao D. Chemistry-A European Journal, 2007, 13(15):4146.
[65] Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Chem. Commun. (Camb), 2011, 47(7):2071.
[66] Bustamante E L, Fernández J L, Zamaro J M. Journal of Colloid and Interface Science, 2014, 424(18):37.
[67] Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. Chemistry Letters, 2012, 41(10):1337.
[68] 姜交来(Jiang J L),廖俊生(Liao J S). 材料导报A(Materials Review A), 2015, 29(8):52.
[69] Keser Demir N, Topuz B, Yilmaz L, Kalipcilar H. Microporous and Mesoporous Materials, 2014, 198(18):291.
[70] Chen B, Bai F, Zhu Y, Xia Y. Microporous and Mesoporous Materials, 2014, 193(27):7.
[71] Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Chemistry of Materials, 2011, 23(8):2130.
[72] Gross A F, Sherman E, Vajo J J. Dalton Transactions, 2012, 41(18):5458.
[73] Yang T, Chung T. International Journal of Hydrogen Energy, 2013, 38(1):229.
[74] He M, Yao J, Liu Q, Wang K, Chen F, Wang H. Microporous and Mesoporous Materials, 2014, 184(2):55.
[75] Pan Y, Heryadi D, Zhou F, Zhao L, Lestari G, Su H, Lai Z. CrystEngComm, 2011, 13(23):6937.
[76] Ahmed A, Forster M, Jin J, Myers P, Zhang H. ACS Applied Materials & Interfaces, 2015, 7(32):18054.
[77] Yan F, Liu Z, Chen J, Sun X, Li X, Su M, Li B, Di B. RSC Adv., 2014, 4(62):33047.
[78] Wang F, Liu Z, Yang H, Tan Y, Zhang J. Angewandte Chemie, 2011, 50(2):450.
[79] Jing H, Wang C, Zhang Y, Li P W. The Royal Society of Chemistry, 2014, (4):5445.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[5] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[6] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[7] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[10] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[11] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[12] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[13] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[14] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[15] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.