English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1679-1688 DOI: 10.7536/PC150535 前一篇   

• 综述与评论 •

VPO催化氧化正丁烷反应动力学

蒋斌波1, 袁世岭1, 陈楠1, 王海波2, 王靖岱1, 黄正梁1*   

  1. 1. 浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027;
    2. 中国石化抚顺石油化工研究院 抚顺 113001
  • 收稿日期:2015-05-01 修回日期:2015-08-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 黄正梁 E-mail:huangzhengl@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21176208)资助

Reaction Kinetics of n-Butane Oxidation on VPO Catalyst

Jiang Binbo1, Yuan Shiling1, Chen Nan1, Wang Haibo2, Wang Jingdai1, Huang Zhengliang1*   

  1. 1. State Key Laboratory of Chemical Engineering, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun 113001, China
  • Received:2015-05-01 Revised:2015-08-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21176208).
VPO催化氧化正丁烷制顺酐是目前唯一实现工业化的低碳烷烃选择氧化反应。本文介绍了VPO催化机理和主要的反应网络,综述了国内外反应动力学的研究进展情况。根据人们对正丁烷氧化反应机理的不断认知及动力学模型的完整性,首次将正丁烷氧化制顺酐反应动力学的发展分为探索期、成型期和拓展期三个时期,并阐释了每个时期的特征和典型模型。探索期特征是仅考虑反应物在催化剂表面的吸附行为,成型期特征是充分考虑了产物对反应的抑制作用,拓展期特征是考虑了催化剂氧化度不断变化的动态过程并将不同氧气形式之间的相互变化引入动态模型中。从时空多尺度角度研究动力学和传递之间的相互作用是正丁烷选择氧化反应动力学下一步的研究重点,也是未来动力学研究的发展方向。
n-Butane selective oxidation to maleic anhydride on VPO catalyst is the only industrialized selective oxidation reaction of light alkanes. The catalytic mechanism and reaction network are introduced. The research progress of reaction kinetics at home and abroad is reviewed. Based on continuous knowledge of reaction mechanism and the integrity of the kinetics model, the development of reaction kinetics is divided into three periods for the first time, that is, the exploration period, the forming period and the further developing period. The features and the typical models of every period are introduced. The feature of the exploration period is that the model only takes reactants' adsorption behavior on the catalyst surface into account. The feature of the forming period is that the product inhibition on the reaction is taken fully into account. The feature of the further developing period is that the oxidation degree of the catalyst with time changes and conversion among different forms of oxygen is brought into the dynamic model. Finally, we point out that the research of n-butane selective oxidation reaction kinetics will focus on the research of the interaction between kinetics and transfer process in the perspective of space-time multiscale.

Contents
1 Introduction
2 Catalytic mechanism
3 Reaction network
3.1 Triangle reaction network
3.2 Reaction network involving furan route
3.3 Reaction network involving alkoxide route and furan route
4 Reaction kinetics
4.1 The exploration period
4.2 The forming period
4.3 The further developing period
5 Conclusion

中图分类号: 

()
[1] Ballarini N, Cavani F, Cortelli C, Ligi S, Pierelli F, Trifirò F, Fumagalli C, Mazzoni G, Monti T. Topics in Catalysis, 2006, 38(1/3):147.
[2] Frey J, Lieder C, Schölkopf T, Schleid T, Nieken U, Klemm E, Hunger M. Journal of Catalysis, 2010, 272(1):131.
[3] Shekari A. Doctoral Dissertation of University of Western Ontario, 2011.
[4] Shekari A, Patience G S. International Journal of Chemical Reactor Engineering, 2012, 10(1):1542.
[5] Eichelbaum M, Haevecker M, Heine C, Karpov A, Dobner C K, Rosowski F, Trunschke A, Schloegl R. Angewandte Chemie International Edition, 2012, 51(25):6246.
[6] Wilkinson S K, Simmons M J H, Stitt E H, Baucherel X, Watson M J. Journal of Catalysis, 2013, 299:249.
[7] Cheng M J, Goddard W R. Journal of American Chemical Society, 2013, 135(12):4600.
[8] Dietl N, Wende T, Chen K, Jiang L, Schlangen M, Zhang X H, Asmis K A, Schwarz H. Journal of American Chemical Society, 2013, 135(9):3711.
[9] Cheng M, Goddard W A, Fu R. Topics in Catalysis, 2014, 57(14/16):1171.
[10] Cheng M, Fu R, Goddard I W A. Chemical Communications, 2014, 50(14):1748.
[11] Pratibha L G, Kourtakis K. Science, 1995, 267(5198):661.
[12] Coulston G W, Bare S R, Kung H, Birkeland K, Bethke G K, Harlow R, Herron N, Lee P L. Science, 1997, 275(5297):191.
[13] Conte M, Budroni G, Bartley J K, Taylor S H, Carley A F, Schmidt A, Murphy D M, Girgsdies F, Ressler T, Schlogl R, Hutchings J G. Science, 2006, 313(5791):1270.
[14] Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su D S. Science, 2007, 317(5840):927.
[15] 汪佩(Wang P), 傅钢(Fu G), 万惠霖(Wan H L). The 14th National Youth Conference on Catalysis. 长春(Changchun):吉林大学出版社(Jilin University Press), 2013. OD-18.
[16] Trifirò F, Grasselli R K. Topics in Catalysis, 2014, 57(14/16):1188.
[17] Lorences M J, Patience G S, Cenni R, Díez F, Coca J. Catalysis Today, 2006, 112(1/4):45.
[18] Gascón J, Valenciano R, Telléz C, Herguido J, Menéndez M. Chemical Engineering Science, 2006, 61(19):6385.
[19] Dudukovic M P. Science, 2009, 325:698.
[20] 蒋亚琪(Jiang Y Q), 周朝晖(Zhou Z H), 魏赞斌(Wei Z B), 万惠霖(Wan H L).高等学校化学学报(Chemical Journal of Chinese Universities), 2000, 21(8):1177.
[21] 王晓书(Wang X S), 聂维艳(Nie W Y), 季伟捷(Ji W J), 颜其洁(Yan Q J), 陈懿(Chen Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2002, 23(4):620.
[22] Nie W Y, Wang Z Y, Ji W J, Chen Y, Au C T. Applied Catalysis A:General, 2003, 244(2):265.
[23] Li X K, Ji W J, Zhao J, Zhang Z B, Au C T. Applied Catalysis A:General, 2006, 306(7):8.
[24] Li X, Ji W J, Zhao J, Zhang Z B, Au C T. Journal of Catalysis, 2006, 238(1):232.
[25] Feng R M, Yang X J, Ji W J, Chen Y, Au C T. Journal of Catalysis, 2007, 246(1):166.
[26] Lin Z, Weng W, Kiely C J, Dummer N F, Bartley J K, Hutchings G J. Catalysis Today, 2010, 157(1/4):211
[27] Otaibi R A, Weng W H, Bartley J K, Dummer N F, Kiely C J, Hutchings G J. ChemCatChem, 2010, 2(4):443.
[28] Centi G. Catalysis Today, 1993, 16(1):5.
[29] 刘先明(Liu X M), 李春福(Li C F), 高浩华(Gao H H), 蒋大林(Jing D L), 冯景隆(Feng J L), 康小平(Kang X P), 席宗敬(Xi Z J). 材料导报(Materials Review), 2008(4):57.
[30] Hutchings G J. Journal of Materials Chemistry, 2009, 19(9):1222.
[31] Dummer N F, Bartley J K, Hutchings G J. Advances in Catalysis, 2011, 54:189.
[32] 师慧敏(Shi H M), 陈雅萍(Chen Y P).石油化工(Petrochemical Technology), 2013, 42(9):1044.
[33] Cavani F, Trifiro F. In Catalysis.(Eds. Spivey J J, Agarwal S K). London:The Royal Society of Chemistry. 1994, 11:246.
[34] Shekari A, Patience G S. Catalysis Today, 2010, 157(1/4):334.
[35] Mills P L, Randall H T, Mccracken J S. Chemical Engineering Science, 1999, 54(15/16):3709.
[36] Huang X F, Li C Y, Chen B H, Silveston P L. AIChE Journal, 2002, 48(4):846.
[37] Pepera M A, Callahan J L, Desmond M J, Pepera M A, Callahan J L, Desmond M J, Milberger E C, Blum P R, Bremer N J. Journal of American Chemical Society, 1985, 107(17):4883.
[38] Escardino A, Sola C, Ruiz F. Anales De Química, 1973, 69(11):385.
[39] Varma R L, Saraf D N. Journal of Catalysis, 1978, 55(3):361.
[40] Moser T P, Schrader G L. Journal of Catalysis, 1985, 92(2):216.
[41] Centi G, Fornasari G, Trifirò F. Journal of Catalysis, 1984, 89(1):44.
[42] Centi G, Fornasari G, Trifirò F. Industrial & Engineering Chemistry Product Research, 1985, 24(1):32.
[43] Centi G, Trifirò F, Ebner J R, Franchetti V M. Chemical Reviews, 1988, 88(1):55.
[44] Hodnett B K, Delmon B. Bulletin Des Societes Chimiques Belges, 1983, 92(8):695.
[45] Hodnett B K. Catalysis Review-Science and Engineering, 1985, 27(3):373.
[46] Gleaves J T, Ebner J R, Kuechler T C. Catalysis Reviews-Science and Engineering, 1988, 30(1):49.
[47] Xue Z Y, Schrader G L. Journal of Catalysis, 1999, 184(1):87.
[48] Centi G, Perathoner S. International Journal of Molecular Sciences, 2001, 2(5):183.
[49] Wohlfahrt K, Hofmann H. Chemie Ingenieur Technik, 1980, 52(10):811.
[50] Sharma R K, Cresswell D L, Newson E J. AIChE Annual Meeting. San Francisco. 1984.
[51] Lerou J J. 25th Annual Spring Symposium of Pitt-Cleve Catalysis Society. 1986.
[52] Kumar K V, Porkodi K, Rocha F. Catalysis Communications, 2008, 9(1):82.
[53] Rideal E K. Chemical Industry, 1943, 62:335.
[54] Mars P, van Krevelen D W. Chemical Engineering Science, 1954, 3:41.
[55] Sharma R K, Cresswell D L, Newson E J. AIChE Journal, 1991, 37(1):39.
[56] Uihlein K. Doctoral Dissertation of Universität Karlsruhe, 1993.
[57] Schneider P, Emig G, Hofmann H. Industrial and Engineering Chemistry Research, 1987, 26(11):2236.
[58] Buchanan J S, Sundaresan S. Applied Catalysis, 1986, 26(1/2):211.
[59] Rodemerck U. Doctoral Dissertation of Ruhr-Universität Bochum, 1995.
[60] Kubias B, Rodemerck U, Zanthoff H W, Meisel M. Catalysis Today, 1996, 32(1/4):243.
[61] Bej S K, Rao M S. Industrial & Engineering Chemistry Research, 1991, 30(8):1819.
[62] Bej S K, Rao M S. Industrial & Engineering Chemistry Research, 1991, 30(8):1824.
[63] Bej S K, Rao M S. Industrial & Engineering Chemistry Research, 1991, 30(8):1829.
[64] Becker C, Eigenberger G, Dieterich E E. Chemie Ingenieur Technik, 1999, 71(9):977.
[65] Becker C. Doctoral Dissertation of Universität Stuttgart, 2002.
[66] 黄晓峰(Huang X F). 北京化工大学博士论文(Doctoral Dissertation of Beijing University of Chemical Technology), 1999.
[67] 杨东海(Yang D H), 黄晓峰(Huang X F), 陈标华(Chen B H), 李成岳(Li C Y). 催化学报(Chinese Journal of Catalysis), 2000, 21(6):561.
[68] Gascón J, Telléz C, Herguido J, Menéndez M. Industrial & Engineering Chemical Research, 2005, 44(24):8945.
[69] Pugsley T S, Patience G S, Berruti F, Chaouki J. Industrial & Engineering Chemistry Research, 1992, 31(12):2652.
[70] Fernandez J R, Vega A, Diez F V. Applied Catalysis A:General, 2010, 376(1/2):76.
[71] Hutchenson K W, La Marca C, Patience G S, Laviolettec J P, Bockratha RE. Applied Catalysis A:General, 2010, 376(1/2):91.
[72] Mallada R, Pedernera M, Menéndez N, Santamaría J. Industrial & Engineering Chemistry Research, 2000, 39(3):620.
[73] Mallada R, Menéndez M, Santamaría J. Catalysis Today, 2000, 56(1/3):191.
[74] Pedernera M, Mallada R, Menéndez M, Santamaría J. AIChE Journal, 2000, 46(12):2489.
[75] Alonso M, Lorences M J, Pina M P, Patience G S. Catalysis Today, 2001, 67(1/3):151.
[76] Mallada R, Menéndez M, Santamaría J. Applied Catalysis A-General, 2002, 231(1/2):109.
[77] Alonso M, Patience G, Fernández J R, Lorencesc M J, Díeza F, Vegaa A, Cennic R. Catalysis Today, 2006, 118(1/2):32.
[78] Chalakov L, Rihko-Struckmann L K, Munder B, Raua H, Sundmacher K. Chemical Engineering Journal, 2007, 131(1/3):15.
[79] Marín P, Hamel C, Ordóñez S, Díeza F V, Tsotsasc E, Seidel M A. Chemical Engineering Science, 2010, 65(11):3538.
[80] Ueda W, Moro-Oka Y, Ikawa T. Journal of the Chemical Society-Faraday Transactions Ⅰ:Physical Chemistry in Condensed Phases, 1982, 78(2):495.
[81] Glaeser L C, Brazdil J F, Hazle M A, Mehicic M, Grasselli R K. Journal of the Chemical Society-Faraday Transactions Ⅰ:Physical Chemistry in Condensed Phases, 1985, 81(11):2903.
[82] Che M, Tench A J. Advances in Catalysis, 1982, 31:77.
[83] Hodnett B K, Permanne P, Delmon B. Applied Catalysis, 1983, 6(2):231.
[84] Hodnett B K, Delmon B. Journal of Catalysis, 1984, 88(1):43.
[85] Morishige H, Teraoka Y, Miura N, Yamazoe N. Nippon Kagaku Kaishi, 1989,(7):1074.
[86] Iwamoto M, Yahiro H, Tanda K, Inui T. Stud. Surf. Sci. Catal, 1988, 44:15.
[87] Morishige H, Tamaki J, Miura N, Yamazoe N. Chemistry Letters, 1990,(9):1513.
[88] 梁日忠(Liang R Z). 北京化工大学博士论文(Doctoral Dissertation of Beijing University of Chemical Technology), 2002.
[89] 梁日忠(Liang R Z),李成岳(Li C Y).上海大学学报(自然科学版)(The Journal of Shanghai University(Natural Science)). 2006,(6):615.
[90] Mills P L, Randall H T, McCracken J S. Chemical Engineering Science, 1999, 54(15/16):3709.
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[5] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[6] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[7] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[8] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[9] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[10] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[11] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[12] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
阅读次数
全文


摘要

VPO催化氧化正丁烷反应动力学