English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1591-1603 DOI: 10.7536/PC150512 前一篇   后一篇

• 综述与评论 •

石墨烯基水凝胶的研究进展

刘静静, 楚晖娟, 魏宏亮*, 祝红征, 朱靖, 何娟   

  1. 河南工业大学化学化工学院 郑州 450001
  • 收稿日期:2015-05-01 修回日期:2015-07-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 魏宏亮 E-mail:weihl68@126.com
  • 基金资助:
    河南省高校科技创新人才支持计划(No.2012HASTIT017)、河南省科技厅(No.142300410011,102102210131,152102110073)以及河南工业大学校科学研究基金(No.2012JCYJ07)资助

Progress in Graphene-Based Hydrogels

Liu Jingjing, Chu Huijuan, Wei Hongliang*, Zhu Hongzheng, Zhu Jing, He Juan   

  1. School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
  • Received:2015-05-01 Revised:2015-07-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by Henan Province University Innovation Talents of Science and Technology Support Program(No.2012HASTIT017), the Science and Technology Department of Henan Province(No.142300410011, 102102210131,152102110073), and Henan University of Technology(No.2012JCYJ07).
石墨烯具有独特的导电、导热和力学性能,既能够自组装为电化学性能优良的石墨烯水凝胶,又可以与小分子和聚合物进行复合制备多功能性复合水凝胶,大幅度地拓展了传统水凝胶的应用范围。本文主要分为四部分来综述近些年来石墨烯基水凝胶的研究进展。第一部分简要介绍了石墨烯的研究背景和石墨烯基水凝胶的研究意义。第二部分主要根据石墨烯基水凝胶的组成将其分为石墨烯水凝胶、石墨烯/小分子和石墨烯/聚合物复合水凝胶三类,分别介绍了它们的制备方法、形成机理和凝胶性能。其中,对石墨烯/小分子复合水凝胶的介绍以石墨烯基超分子水凝胶为主,而对石墨烯/聚合物复合水凝胶的介绍以智能型水凝胶为主。第三部分主要介绍了石墨烯基水凝胶在超级电容器、水处理、控释药物、微流体开关、催化剂载体等方面的应用和发展。最后,对该领域所面临的挑战进行了总结和展望。
The unique properties of graphene, such as high electrical conductivity, high thermal conductivity and excellent mechanical properties, have made graphene not only a gelator to self-assemble into the graphene hydrogel with extraordinary electromechanical performance, but also a filler to blend with small molecules and macromolecules for the preparation of multifunctional graphene-based hybrid hydrogels, which fully exploits the practical applications of traditional hydrogels. Herein, recent progress in graphene-based hybrid hydrogels has been reviewed and the whole article can be divided into four sections. In the first section, a brief introduction on the development of graphene as well as the significance of the fabrication of graphene-based hydrogels is devoted. In the second section, the graphene-based hybrid hydrogels are roughly divided into three categories: graphene hydrogel, graphene/small molecules and graphene/macromolecules hybrid hydrogels according to their composition. The preparation methods of various hydrogels, as well as the mechanisms of their gelation process and the hydrogels' performance, are also presented. With the presentation of graphene/small molecules hybrid hydrogels, emphasis is given to the development of graphene-based supramolecular hydrogels, while with the presentation of graphene/macromolecules hybrid hydrogels, graphene-based intelligent hydrogels contributed a much higher proportion. In the third section, the applications of graphene-based hybrid hydrogels in supercapacitor, water purification, controlled release drug, microfluidic switch, catalyst support, etc., are introduced respectively. Finally, challenges in the development of graphene-based hydrogels are summarized briefly and future prospect is given as well.

Contents
1 Introduction
2 Categories of graphene-based hydrogels
2.1 Graphene hydrogels
2.2 Graphene/small molecules hybrid hydrogels
2.3 Graphene/macromolecules hybrid hydrogels
3 Applications of graphene-based hydrogels
3.1 Supercapacitor
3.2 Water purification
3.3 Drug-controlled release
3.4 Microfluidic switch
3.5 Catalyst support
3.6 Others
4 Conclusion

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[2] Sutter P W, Flege J I, Sutter E A. Nat. Mater., 2008, 7:406.
[3] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312:1191.
[4] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y, Hong B H. Nature, 2009, 457:706.
[5] Eizenberg M, Blakely J M. Surf. Sci., 1979, 82:228.
[6] Rangappa D, Sone K, Wang M, Gautam U K, Golberg D, Itoh H, Ichihara M, Honma I. Chem. Eur. J., 2010, 16:6488.
[7] Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4:217.
[8] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39:228.
[9] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80:1339.
[10] Si Y, Samulski E T. Nano Lett., 2008, 8:1679.
[11] Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nanotechnol., 2009, 4:25.
[12] Shen B, Lu D, Zhai W, Zheng W. J. Mater. Chem. C, 2013, 1:50.
[13] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem. Mater., 2007, 19:4396.
[14] Zhang H B, Wang J W, Yan Q, Zheng W G, Chen C, Yu Z Z. J. Mater. Chem., 2011, 21:5392.
[15] Peak C W, Wilker J J, Schmidt G. Colloid and Polymer Science, 2013, 291:2031.
[16] Li C, Shi G. Adv. Mater., 2014, 26:3992.
[17] Nardecchia S, Carriazo D, Ferrer M L, Gutierrez M C, del Monte F. Chem. Soc. Rev., 2013, 42:794.
[18] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4:4324.
[19] Zhang L, Shi G. J. Phys. Chem. C, 2011, 115:17206.
[20] Sui Z, Zhang X, Lei Y, Luo Y. Carbon, 2011, 49:4314.
[21] Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. J. Mater. Chem., 2011, 21:6494.
[22] Sheng K X, Xu Y X, Li C, Shi G Q. New Carbon Mater., 2011, 26:9.
[23] Zhang L, Chen G, Hedhili M N, Zhang H, Wang P. Nanoscale, 2012, 4:7038.
[24] Bi H, Yin K, Xie X, Zhou Y, Wan N, Xu F, Banhart F, Sun L, Ruoff R S. Adv. Mater., 2012, 24:5124.
[25] Li H, Zhang B, Lu C. Mater. Lett., 2014, 129:24.
[26] Compton O C, An Z, Putz K W, Hong B J, Hauser B G, Brinson L C, Nguyen S T. Carbon, 2012, 50:3399.
[27] Rybtchinski B. ACS Nano, 2011, 5:6791.
[28] Adhikari B, Biswas A, Banerjee A. Langmuir, 2012, 28:1460.
[29] Delbecq F, Endo H, Kono F, Kikuchi A, Kawai T. Polymer, 2013, 54:1064.
[30] Ogoshi T, Ichihara Y, Yamagishi T A, Nakamoto Y. Chem. Commun., 2010, 46:6087.
[31] Adhikari B, Biswas A, Banerjee A. ACS Appl. Mater. Interfaces, 2012, 4:5472.
[32] Cheng Q Y, Zhou D, Gao Y, Chen Q, Zhang Z, Han B H. Langmuir, 2012, 28:3005.
[33] Ai W, Du Z-Z, Liu J-Q, Zhao F, Yi M D, Xie L H, Shi N E, Ma Y W, Qian Y, Fan Q-L, Yu T, Huang W. RSC Adv., 2012, 2:12204.
[34] Qiu L, Yang X, Gou X, Yang W, Ma Z F, Wallace G G, Li D. Chem. Eur. J., 2010, 16:10653.
[35] Zhang C, Ren L, Wang X, Liu T. J. Phys. Chem. C, 2010, 114:11435.
[36] Cong H P, Ren X C, Wang P, Yu S-H. ACS Nano, 2012, 6:2693.
[37] Szejtli J. Chem. Rev., 1998, 98:1743.
[38] Zu S Z, Han B H. J. Phys. Chem. C, 2009, 113:13651.
[39] Liu J, Chen G, Jiang M. Macromolecules, 2011, 44:7682.
[40] Luan V H, Tien H N, Hoa L T, Hien N T M, Oh E S, Chung J, Kim E J, Choi W M, Kong B S, Hur S H. J. Mater. Chem. A, 2013, 1:208.
[41] van Hoang L, Chung J S, Kim E J, Hur S H. Chem. Eng. J., 2014, 246:64.
[42] Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Adv. Mater., 2013, 25:2219.
[43] Garcia A, Marquez M, Cai T, Rosario R, Hu Z, Gust D, Hayes M, Vail S A, Park C D. Langmuir, 2007, 23:224.
[44] Osada Y, Gong J P. Prog. Polym. Sci., 1993, 18:187.
[45] Liu F, Urban M W. Prog. Polym. Sci., 2010, 35:3.
[46] Alzari V, Nuvoli D, Sanna R, Peponi L, Piccinini M, Bon S B, Marceddu S, Valentini L, Kenny J M, Mariani A. Colloid Polym. Sci., 2013, 291:2681.
[47] Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Adv. Funct. Mater., 2009, 19:2297.
[48] Kim J E, Lee H S. Polymer, 2014, 55:287.
[49] Sridhar V, Oh I K. J. Colloid Interf. Sci., 2010, 348:384.
[50] Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y. J. Mater. Chem., 2011, 21:10399.
[51] Bai H, Li C, Wang X, Shi G. Chem. Commun., 2010, 46:2376.
[52] Lu N, Liu J, Li J, Zhang Z, Weng Y, Yuan B, Yang K, Ma Y. J. Mater. Chem. B, 2014, 2:3791.
[53] Zhu C H, Lu Y, Peng J, Chen J F, Yu S H. Adv. Funct. Mater., 2012, 22:4017.
[54] Huang S, Shen J, Li N, Ye M. J. Appl. Polym. Sci., 2015, doi:10.1002/app.41530.
[55] Wu Y, Cai M, Pei X, Liang Y, Zhou F. Macromol. Rapid Commun., 2013, 34:1785.
[56] Zhang E, Wang T, Lian C, Sun W, Liu X, Tong Z. Carbon, 2013, 62:117.
[57] Hou C, Zhang Q, Zhu M, Li Y, Wang H. Carbon, 2011, 49:47.
[58] Hou C, Zhang Q, Li Y, Wang H. Carbon, 2012, 50:1959.
[59] Ma X, Li Y, Wang W, Ji Q, Xia Y. Eur. Polym. J., 2013, 49:389.
[60] Jang J H, Kim J K, Huh D S. Macromol. Res., 2014, 22:1132.
[61] Lee S, Lee H, Sim J H, Sohn D. Macromol. Res., 2014, 22:165.
[62] Faghihi S, Karimi A, Jamadi M, Imani R, Salarian R. Mater. Sci. Eng. C, 2014, 38:299.
[63] Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q. Colloids Surf. A, 2012, 401:97.
[64] Shen J, Yan B, Li T, Long Y, Li N, Ye M. Compos. Part A-Appl. S., 2012, 43:1476.
[65] Liu J, Cui L, Kong N, Barrow C J, Yang W. Eur. Polym. J., 2014, 50:9.
[66] Shen J, Yan B, Li T, Long Y, Li N, Ye M. Soft Matter, 2012, 8:1831.
[67] Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z Z. J. Mater. Chem., 2012, 22:14160.
[68] Shi Y, Ma C, Peng L, Yu G. Adv. Funct. Mater., 2015, 25:1219.
[69] Sun S, Wu P. J. Mater. Chem., 2011, 21:4095.
[70] Li Z, Shen J, Ma H, Lu X, Shi M, Li N, Ye M. Mater. Sci. Eng. C, 2013, 33:1951.
[71] Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25:3357.
[72] Lei W, Si W, Xu Y, Gu Z, Hao Q. Microchim. Acta, 2014, 181:707.
[73] Yuan M, Liu A, Zhao M, Dong W, Zhao T, Wang J, Tang W. Sens. Actuators, B, 2014, 190:707.
[74] Chen S, Bao P, Huang X, Sun B, Wang G. Nano Res., 2014, 7:85.
[75] Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38:2520.
[76] Li N, Tang S, Dai Y, Meng X. J. Mater. Sci., 2014, 49:2802.
[77] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8:3498.
[78] Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. J. Phys. Chem. C, 2009, 113:13103.
[79] Quan H, Shao Y, Hou C, Zhang Q, Wang H, Li Y. Mater. Sci. Eng. B, 2013, 178:769.
[80] Chang Y, Han G, Yuan J, Fu D, Liu F, Li S. J. Power Sources, 2013, 238:492.
[81] Xu Y, Huang X, Lin Z, Zhong X, Huang Y, Duan X. Nano Res., 2013, 6:65.
[82] Zhang F, Xiao F, Dong Z H, Shi W. Electrochim. Acta, 2013, 114:125.
[83] She X, Sun P, Yu X, Zhang Q, Wu Y, Li L, Huang Y, Shang S, Jiang S. J. Inorg. Oraganomet. P., 2014, 24:884.
[84] Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X. Nano Energy, 2014, 7:86.
[85] Chen P, Yang J J, Li S S, Wang Z, Xiao T Y, Qian Y H, Yu S H. Nano Energy, 2013, 2:249.
[86] Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L. Adv. Mater., 2013, 25:591.
[87] Xu J, Wang L, Zhu Y. Langmuir, 2012, 28:8418.
[88] Hou C, Zhang Q, Li Y, Wang H. J. Hazard. Mater., 2012, 205:229.
[89] Cong H P, Qiu J H, Yu S H. Small, 2015, 11:1165.
[90] Sun H, Xu Z, Gao C. Adv. Mater., 2013, 25:2554.
[91] Tiwari J N, Mahesh K, Le N H, Kemp K C, Timilsina R, Tiwari R N, Kim K S. Carbon, 2013, 56:173.
[92] Xu Y, Wu Q, Sun Y, Bai H, Shi G. ACS Nano, 2010, 4:7358.
[93] Wang X, Liu Z, Ye X, Hu K, Zhong H, Yu J, Jin M, Guo Z. Appl. Surf. Sci., 2014, 308:82.
[94] Gao H, Sun Y, Zhou J, Xu R, Duan H. ACS Appl. Mater. Interfaces, 2013, 5:425.
[95] Chen Y, Chen L, Bai H, Li L. J. Mater. Chem. A, 2013, 1:1992.
[96] Liu Z, Robinson J T, Sun X, Dai H. J. Am. Chem. Soc., 2008, 130:10876.
[97] Wang J, Liu C, Shuai Y, Cui X, Nie L. Colloids Surf. B, 2014, 113:223.
[98] Ehrbar M, Schoenmakers R, Christen E H, Fussenegger M, Weber W. Nat. Mater., 2008, 7:800.
[99] Koutsopoulos S, Zhang S. J. Controlled Release, 2012, 160:451.
[100] Wu J, Chen A, Qin M, Huang R, Zhang G, Xue B, Wei J, Li Y, Cao Y, Wang W. Nanoscale, 2015, 7:1655.
[101] Zhang E, Wang T, Hong W, Sun W, Liu X, Tong Z. J. Mater. Chem. A, 2014, 2:15633.
[102] Moon Y E, Jung G, Yun J, Kim H I. Mater. Sci. Eng. B, 2013, 178:1097.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[8] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[9] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[10] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[11] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[12] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[13] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[14] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[15] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
阅读次数
全文


摘要

石墨烯基水凝胶的研究进展