English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1555-1565 DOI: 10.7536/PC150511 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

非离子型表面活性剂对木质纤维素酶催化水解的影响及机理

周妍, 赵雪冰*, 刘德华   

  1. 清华大学化学工程系应用化学研究所 北京 100084
  • 收稿日期:2015-05-01 修回日期:2015-08-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 赵雪冰 E-mail:zhaoxb@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21106081)、国家重点基础研究发展计划(973)项目(No.2011CB707406)和国家能源局重点项目(No.NY20130402)资助

Effects of Non-Ionic Surfactant on the Enzymatic Hydrolysis of Lignocellulose and Corresponding Mechanism

Zhou Yan, Zhao Xuebing*, Liu Dehua   

  1. Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2015-05-01 Revised:2015-08-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21106081), the National Basic Research Program of China(973 Program)(No.2011CB707406), and the National Energy Administration Project(No.NY20130402).
木质纤维素的酶解糖化过程是纤维素生物质转化中的关键步骤,也是限制纤维素生物转化生产燃料和化学品的主要瓶颈。大量的研究表明,非离子型表面活性剂能够强化木质纤维素酶解过程,显著提高纤维素的酶催化水解效率。本文综述了非离子型表面活性剂对纯纤维素和木质纤维素底物酶解的影响,分析了底物结构特性、水解条件、纤维素酶组成等诸多因素与表面活性剂作用效果之间的关联,并从纤维素酶的吸附特性、纤维素酶组分间的协同作用等方面对非离子表面活性剂的作用机理进行了总结。结合已有的研究进展和存在的问题,提出了今后表面活性剂对于木质纤维素酶催化水解影响的研究重点方向,即系统分析底物结构、水解条件等因素对表面活性剂作用的宏观影响,以及分析这种作用的热力学和动力学特性,而微观上需要从原子和分子层面上解析表面活性剂与底物和纤维素酶之间的相互作用特性。
During the bioconversion of lignocellulose, enzymatic hydrolysis of cellulose to produce glucose is a key step. However, it also has become a bottle-neck for effective bioconversion of lignocellulosic biomass to fuels or chemicals. A large amount of works have demonstrated that addition of non-ionic surfactant during enzymatic hydrolysis of pretreated lignocelluloses can effectively improve the cellulose conversion thus reducing the enzyme loading. In this paper, the effects of non-ionic surfactant on enzymatic hydrolysis of pure cellulose and pretreated lignocellulose are reviewed comprehensively. The relationships of the structural features of substrate, hydrolysis conditions and cellulase formulation with the action of surfactant are discussed. Corresponding mechanisms are analyzed in terms of the adsorption of cellulases and the synergism of the cellulase components. However, the current research progress has not clearly elucidated the mechanisms for the effects of non-ionic surfactant on cellulose hydrolysis. It is proposed that to deeply understand the mechanism, further researches should be focused on systematically investigating the relations of substrate structure, hydrolysis conditions with the actions of non-ionic surfactant to the enzymatic hydrolysis of cellulose. Microscopically, the interactive actions and forces between surfactant and substrate, surfactant and cellulase enzymes should be investigated from the atomic and molecular levels. The thermodynamic and kinetic behaviors of enzymatic hydrolysis of cellulose with addition of surfactant should also be illustrated.

Contents
1 Introduction
2 Effects of surfactant on enzymatic hydrolysis of pure cellulose and mechanism
2.1 Factors influencing the action of surfactant
2.2 Mechanism for the action of surfactant on pure cellulose hydrolysis
3 Effects of surfactant on enzymatic hydrolysis of pretreated lignocellulose
3.1 Effects of substrate structural features
3.2 Effects of hydrolysis conditions
4 Mechanisms for the action of surfactant on lignocellulose hydrolysis
4.1 Effects of surfactant on substrate structure
4.2 Effects of surfactant on enzyme stability
4.3 Effects of surfactant on the interaction between enzyme and substrate
5 Conclusion

中图分类号: 

()
[1] Sanderson K. Nature, 2011, 474(7352):S12.
[2] Jørgensen H, Kristensen J B, Felby C. Biofuels, Bioproducts and Biorefining, 2007, 1(2):119.
[3] Sun Y, Cheng J. Bioresource technology, 2002, 83(1):1.
[4] Zhao X, Zhang L, Liu D. Biofuels, Bioproducts and Biorefining, 2012, 6(4):465.
[5] Chundawat S P S, Donohoe B S, da Costa Sousa L, Elder T, Agarwal U P, Lu F, Ralph J, Himmel M E, Balan V, Dale B E. Energy & Environmental Science, 2011, 4(3):973.
[6] Zhang M, Ouyang J, Liu B, Yu H, Jiang T, Cai C, Li X. Bioenergy Research, 2013, 6(4):1252.
[7] Eriksson T, Börjesson J, Tjerneld F. Enzyme and Microbial Technology, 2002, 31(3):353.
[8] Park J W, Takahata Y, Kajiuchi T, Akehata T. Biotechnology and Bioengineering, 1992, 39(1):117.
[9] Bardant T B, Sudiyarmanto S, Abimanyu H, Hanum A K. Indonesian Journal of Chemistry, 2013, 13(1):53.
[10] Kim H J, Kim S B, Kim C J. Biotechnology and Bioprocess Engineering, 2007, 12(2):147.
[11] Helle S S, Duff S J B, Cooper D G. Biotechnology and Bioengineering, 1993, 42(5):611.
[12] Ouyang J, Dong Z, Song X, Lee X, Chen M, Yong Q. Bioresource technology, 2010, 101(17):6685.
[13] Mizutani C, Sethumadhavan K, Howley P, Bertoniere N. Cellulose, 2002, 9(1):83.
[14] Zhou Y, Chen H, Qi F, Zhao X, Liu D. Bioresource Technology, 2015, 182:136.
[15] Börjesson J, Engqvist M, Sipos B, Tjerneld F. Enzyme and Microbial Technology, 2007, 41(1):186.
[16] Yang M, Zhang A, Liu B, Li W, Xing J. Biochemical Engineering Journal, 2011, 56(3):125.
[17] Okino S, Ikeo M, Ueno Y, Taneda D. Bioresource Technology, 2013, 142:535.
[18] Lou H, Zhou H, Li X, Wang M, Zhu J Y. Cellulose, 2014, 21(3):1351.
[19] Wang Z J, Lan T Q, Zhu J Y. Biotechnology Forbiofuels, 2013, 6(1):1.
[20] Ooshima H, Sakata M, Harano Y. Biotechnology and Bioengineering, 1986, 28(11):1727.
[21] Gupta R, Lee Y Y. Biotechnology and Bioengineering, 2009, 102(6):1570.
[22] Zhang Y H P, Lynd L R. Biotechnology and Bioengineering, 2004, 88(7):797.
[23] Liu J, Shi J, Li J, Yuan X. Enzyme and Microbial Technology, 2011, 49(4):360.
[24] Quiroz-Castañeda R E, Folch-Mallol J L. Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization, Chandel A K, da Silva S S, Eds. 2013. 275.
[25] Din N, Damude H G, Gilkes N R, Miller R C, War ren R A, Kilburn D G. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:11383
[26] Boraston A B, Bolam D, Gilbert H, Davis G. Biochem. J, 2004, 382:769.
[27] Gilbert H J. Plant Physiology, 2010, 153(2):444.
[28] Shoseyov O, Shani Z, Levy I. Microbiology and Molecular Biology Reviews, 2006, 70(2):283.
[29] Kotiranta P, Karlsson J, Siika-Aho M, Medve J, Viikari L, Tjerneld F, Tenkanen M. Applied Biochemistry and Biotechnology, 1999, 81(2):81.
[30] Várnai A, Siika-aho M, Viikari L. Enzyme and Microbial Technology, 2010, 46(3):185.
[31] Brash J L, Horbett T A. ACS Symp. Ser., 1995, 602:1.
[32] Nidetzky B, Steiner W, Hayn M, Claeyssens M. Biochem. J, 1994, 298:705.
[33] Jeoh T, Wilson D B, Walker L P. Biotechnology Progress, 2006, 22(1):270.
[34] Andersen N, Johansen K S, Michelsen M, Stenby E, Krogh K, Olsson L. Enzyme and Microbial Technology, 2008, 42(4):362.
[35] Du R, Huang R, Su R, Zhang M, Wang M, Yang J, Qi W, He Z. RSC Advances, 2013, 3(6):1871.
[36] Goyal A, Ghosh B, Eveleigh D. Bioresource Technology, 1991, 36(1):37.
[37] McClellan S J, Franses E I. Colloids and Surfaces B:Biointerfaces, 2003, 28(1):63.
[38] Kelley D, McClements D J. Food Hydrocolloids, 2003, 17(1):73.
[39] Santos S F, Zanette D, Fischer H, Itri R. Journal of Colloid and Interface Science, 2003, 262(2):400.
[40] Kumar R, Wyman C E. Biotechnology and Bioengineering, 2009, 102(6):1544.
[41] Li J, Li S, Fan C, Yan Z. Colloids and Surfaces B:Biointerfaces, 2012, 89:203.
[42] 陈洪章(Chen H Z), 邱卫华(Qiu W H). 化学进展(Progress in Chemistry), 2007, 19(7):1116.
[43] Yang B, Wyman C E. Biotechnology and Bioengineering, 2004, 86(1):88.
[44] Studer M H, DeMartini J D, Davis M F, Sykes R W, Davison B, Keller M, Tuskan G A, Wyman C E. Proc. Nat. Acad. Sc. U. S. A., 2011, 108(15):6300.
[45] Yu Z, Jameel H, Chang H, Park S. Bioresource Technology, 2011, 102(19):9083.
[46] Simmons B A, Loqué D, Ralph J. Current Opinion in Plant Biology, 2010, 13(3):312.
[47] Zhu J Y, Wang G S, Pan X J, Gleisenr R. Chemical Engineering Science, 2009, 64(3):474.
[48] Vidal B C, Dien B S, Ting K C, Singh V. Applied Biochemistry and Biotechnology, 2011, 164(8):1405.
[49] Del Rio L F, Chandra R P, Saddler J N. Bioresource Technology, 2012, 107:235.
[50] Jeoh T, Ishizawa C I, Davis M F, Himmel M E, Adney W S, Johnson D K. Biotechnology and Bioengineering, 2007, 98(1):112.
[51] Huang R, Su R, Qi W, He Z. Biotechnology Progress, 2010, 26(2):384.
[52] Rollin J A, Zhu Z, Sathitsuksanoh N, Zhang Y H P. Biotechnology and Bioengineering, 2011, 108(1):22.
[53] Meng X, Ragauskas A J. Current Opinion in Biotechnology, 2014, 27:150.
[54] Wang Q Q, He Z, Zhu Z, Zhang Y H P, Ni Y, Luo X L, Zhu J Y. Biotechnology and Bioengineering, 2012, 109(2):381.
[55] Arantes V, Saddler J N. Biotechnol Biofuels, 2010, 3(4):1.
[56] Leu S Y, Zhu J Y. Bioenergy Research, 2013, 6(2):405.
[57] Börjesson J, Peterson R, Tjerneld F. Enzyme and Microbial Technology, 2007, 40(4):754.
[58] Sipos B, Dienes D, Schleicher Á, Perazzini R, Crestini C, Siika-Aho M, Réczey K. Enzyme and Microbial Technology, 2010, 47(3):84.
[59] Zheng Y, Pan Z, Zhang R, Wang D, Jenkins B. Biotechnology for Fuels and Chemicals. Humana Press, 2008:351.
[60] Zhang Y, Xu X, Zhang Y, Li J. Biotechnology and Bioprocess Engineering, 2011, 16(5):930.
[61] Cui L, Liu Z, Hui L F, Si C L. BioResources, 2011, 6(4):3850.
[62] Kristensen J B, Börjesson J, Bruun M H, Tjerneld F, Jorgensen H. Enzyme and Microbial Technology, 2007, 40(4):888.
[63] Wu J, Ju L K. Biotechnology Progress, 1998, 14(4):649.
[64] Xingzhong Y, Yunshan L, Guangming Z, Weiwei W. Hydrolysis of pretreated rice straw with surfactants at low cellulase dosage, Sciencepaper online.(2010-01-26). http://www.paper.edu.cn/html/releasepaper/2010/01/1052/
[65] Seo D J, Fujita H, Sakoda A. Adsorption, 2011, 17(5):813.
[66] Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E, Crestini C, Réczey K. Comptes Rendus Biologies, 2011, 334(11):812.
[67] Shevchenko S M, Chang K, Dick D G, Gregg D J, Saddler J N. Cellulose Chemistry and Technology, 2001, 35(5/6):487.
[68] Li J, Henriksson G, Gellerstedt G. Bioresource Technology, 2007, 98(16):3061.
[69] Nakagame S, Chandra R P, Kadla J F, Saddler J N. Biotechnology and Bioengineering, 2011, 108(3):538.
[70] Nakagame S, Chandra R P, Kadla J F, Saddler J N. Bioresource Technology, 2011, 102(6):4507.
[71] Moxley G, Gaspar A R, Higgins D, Xu H. Journal of Industrial Microbiology & Biotechnology, 2012, 39(9):1289.
[72] Nakagame S, Chandra R P, Saddler J N. Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass, 2011. 145.
[73] Pan X. Journal of Biobased Materials and Bioenergy, 2008, 2(1):25.
[74] Van Dyk J S, Pletschke B I. Biotechnology Advances, 2012, 30(6):1458.
[75] Felby C, Thygesen L G, Kristensen J B, Jørgensen, H, Elder T. Cellulose, 2008, 15(5):703.
[76] Kristensen J B, Felby C, Jørgensen H. Biotechnology for Biofuels, 2009, 2(1):11.
[77] Pimenova N V, Hanley T R. Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4-7, 2003, in Breckenridge, CO. Humana Press, 2004. 347.
[78] Modenbach A A, Nokes S E. Biomass and Bioenergy, 2013, 56:526.
[79] Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C. Biotechnology and Bioengineering, 2007, 96(5):862.
[80] Fan Z, South C, Lyford K,Munsie J, Walsum P, Lynd L R. Bioprocess and Biosystems Engineering, 2003, 26(2):93.
[81] 张名佳(Zhang M J), 苏荣欣(Su R X), 齐崴(Qi W), 何志敏(He Z M). 化学进展(Progress in Chemistry), 2009, 21(5).
[82] Cara C, Moya M, Ballesteros I, Negro M J, González A, Ruiz E. Process Biochemistry, 2007, 42(6):1003.
[83] Hodge D B, Karim M N, Schell D J, McMillan J D. Bioresource Technology, 2008, 99(18):8940.
[84] Du J, Li Y, Zhang H, Zheng H, Huang H. Cellulose, 2014, 21(4):2409.
[85] Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer A S. Applied Biochemistry and Biotechnology, 2007, 143(1):27.
[86] Kumar R, Wyman C E. Enzyme and Microbial Technology, 2008, 42(5):426.
[87] Knutsen J S, Liberatore M W. Energy & Fuels, 2010, 24(5):3267.
[88] Ma X, Yue G, Yu J, Zhang X, Tan T. Journal of Biobased Materials and Bioenergy, 2011, 5(2):275.
[89] Wang W, Kang L, Wei H, Arora R, Lee Y Y. Applied Biochemistry and Biotechnology, 2011, 164(7):1139.
[90] Champagne P, Li C. Bioresource Technology, 2009, 100(23):5700.
[91] Reese E T. J. Appl. Biochem., 1980, 2(1):36e9.
[92] Lou H, Zhu J Y, Lan T Q, Lai H, Qiu X. ChemSusChem, 2013, 6(5):919.
[93] Lan T Q, Lou H, Zhu J Y. BioEnergy Research, 2013, 6(2):476.
[94] Eriksson T, Karlsson J, Tjerneld F. Applied Biochemistry and Biotechnology, 2002, 101(1):41.
[95] Eckard A D, Muthukumarappan K, Gibbons W. BioEnergy Research, 2014, 7(1):389.
[96] Qing Q, Yang B, Wyman C E. Bioresource Technology, 2010, 101(15):5941.
[97] Kurakake M, Ooshima H, Kato J, Harano Y. Bioresource Technology, 1994, 49(3):247.
[98] Kaar W E, Holtzapple M T. Biotechnology and Bioengineering, 1998, 59(4):419.
[99] Hemmatinejad N, Vahabzadeh F, Kordestani S S. Iranian Polymer Journal, 2002, 11:333.
[100] Kim W, Gamo Y, Sani Y M, Wusiman Y, Ogawa1 S, Karita S, Goto M. Asian Australasian Journal of Animal Sciences, 2006, 19(5):684.
[101] Seo D J, Fujita H, Sakoda A. Bioresource Technology, 2011, 102(20):9605.
[102] Yoon S H, Robyt J F. Enzyme and Microbial Technology, 2005, 37(5):556.
[103] Chen N, Fan J B, Xiang J, Chen J, Liang Y. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2006, 1764(6):1029.
[104] Chylenski P, Felby C, Haven M , Gama M, Selig M J. Bio-technology Letters, 2012, 34(8):1475.
[105] Kim M H, Lee S B, Ryu D D Y, Reese E T. Enzyme and Mi-crobial Technology, 1982, 4(2):99.
[106] Chia-wen C H, Cannella D, Jørgensen H, Felby C, Thygesen L G. Biotechnology for Biofuels, 2015, 8(1):52.
[107] Zhang Y, Zhang Y, Tang L. Journal of Chemical Technology and Biotechnology, 2011, 86(1):115.
[108] Palonen H, Tjerneld F, Zacchi G,Tenkanen M. Journal of Biotechnology, 2004, 107(1):65.
[109] Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. Humana Press, 2005. 163.
[110] Norde W, Favier J P. Colloids and Surfaces, 1992, 64(1):87.
[111] Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K. Biotechnology and Bioengineering, 2011, 108(12):2823.
[112] Chernoglazov V M, Ermolova O V, Klyosov A A. Enzyme and Microbial Technology, 1988, 10(8):503.
[113] Haynes C A, Norde W. Journal of Colloid and Interface Science, 1995, 169(2):313.
[114] Converse A O, Matsuno R, Tanaka M, Taniguchi M. Biotechnology and Bioengineering, 1988, 32(1):38.
[1] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[2] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[3] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[4] 史利娜, 胡欣, 朱宁, 郭凯. 纤维素基介电材料[J]. 化学进展, 2020, 32(12): 2022-2033.
[5] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[6] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[7] 乔颖, 腾娜, 翟承凯, 那海宁, 朱锦. 化学法催化纤维素高效水解成糖[J]. 化学进展, 2018, 30(9): 1415-1423.
[8] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[9] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[10] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[11] 高玉荣, 黄培, 孙佩佩, 吴敏, 黄勇. 石墨烯/纤维素复合材料的制备及应用[J]. 化学进展, 2016, 28(5): 647-656.
[12] 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 木质纤维素催化转化制备DMF和C5/C6烷烃[J]. 化学进展, 2016, 28(2/3): 363-374.
[13] 夏文, 李政, 徐银莉, 庄旭品, 贾士儒, 张健飞. 超级电容器用细菌纤维素基电极材料[J]. 化学进展, 2016, 28(11): 1682-1688.
[14] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[15] 代林林, 李伟, 曹军, 李坚, 刘守新. 纳米晶纤维素手性向列型液晶相结构的形成、调控及应用[J]. 化学进展, 2015, 27(7): 861-869.