English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1649-1657 DOI: 10.7536/PC150419 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

酶的改造及其催化工程应用

冯旭东, 李春*   

  1. 北京理工大学生命学院 北京 100081
  • 收稿日期:2015-04-01 修回日期:2015-07-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 李春 E-mail:lichun@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21506011,21425624,21176028)资助

The Improvement of Enzyme Properties and Its Catalytic Engineering Strategy

Feng Xudong, Li Chun*   

  1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China
  • Received:2015-04-01 Revised:2015-07-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21506011, 21425624, 21176028).
酶作为生物催化剂在食品、饲料、化妆品以及医药等诸多领域逐渐发挥重要作用。但是,酶对外界环境如pH和温度等很敏感,而实际的反应条件和生物体的生理环境差异较大,因此酶在实际应用中不稳定、容易失活,催化效率下降。酶的这一特点大大限制了其工业化应用。目前,定向进化、糖基化以及化学修饰等方法被广泛用于酶分子的改造以提高其稳定性、催化效率以及扩大其底物范围。其中,定向进化通过模拟自然进化机制,在体外改造基因从而获得性能优化的酶突变体,已经成为了酶改造的重要技术。在酶的实际应用过程中,介质工程、固定化以及多酶催化体系构建等技术被广泛用于提高酶的催化效率。其中,多酶催化体系由于其底物通道效应可以显著提高级联酶反应的效率而备受关注。本文首先重点介绍了近年酶应用的现状,然后从酶定向进化、糖基化以及化学修饰的角度总结了酶改造的方法,最后从介质工程、酶固定化以及体外多酶催化体系等方面进一步总结了酶实际应用中的催化工程策略。
Enzymes play an increasingly important role in many industrial fields such as food, feed, cosmetics and pharmacy. However, enzymes are susceptible to the external environment such as pH and temperature, and the practical operational conditions for enzymes are dramatically different from their physiological conditions, so most enzymes are not sufficiently stable and they are prone to lose their activity under practical operation. This has largely limited their wider industrial application. Currently, directed evolution, glycosylation and chemical modification have been extensively used to improve the enzyme stability, activity and expand the substrate scope. Among them, directed evolution, through which mutants bearing desired properties are obtained by gene diversification manipulation and library screening in vitro, has become a popular technique for enzyme modification. In practical application, medium engineering, immobilization and multi-enzyme complexes have been widely adopted to enhance the catalytic efficiency of enzyme. Among them, multi-enzyme complexes have gained special attention recently due to its substrate channeling effect which can significantly increase the reaction rate for cascade enzymatic reactions. The recent progress of enzyme application is introduced. Then, the popular techniques including directed evolution, glycosylation and chemical modification for the improvement of enzyme properties are reviewed. At last, the techniques including medium engineering, immobilization and multi-enzyme complex for the catalytic engineering of enzyme in practical application are summarized.

Contents
1 Introduction
2 Current application of enzymes
3 Enzyme modification
3.1 Directed evolution
3.2 Glycosylation
3.3 Chemical modification
4 Catalytic engineering of enzymes
4.1 Medium engineering
4.2 Immobilization
4.3 Multi-enzyme complex
5 Conclusion

中图分类号: 

()
[1] Sheldon R A, van Pelt S. Chem. Soc. Rev., 2013, 42:6223.
[2] Clouthier C M, Pelletier J N. Chem. Soc. Rev., 2012, 41:1585.
[3] Li S, Yang X, Yang S, Zhu M, Wang X. Comput. Struct. Biotechnol. J., 2012, 2:e201209017.
[4] Illanes A, Cauerhff A, Wilson L, Castro G R. Bioresour. Technol., 2012, 115:48.
[5] 龚劲松(Gong J S), 李恒(Li H), 陆震鸣(Lu Z M), 史劲松(Shi J S), 许正宏(Xu Z H).化学进展(Prog. Chem.), 2015, 27:448.
[6] Cobucci-Ponzano B, Perugino G, Rossi M, Moracci M. Protein Eng. Des. Sel., 2011, 24:21.
[7] Juturu V, Wu J C. Renew. Sust. Energ. Rev., 2014, 33:188.
[8] Feng S J, Li C, Xu X L, Wang X Y. J. Mol. Catal. B Enzym., 2006, 43:63.
[9] He D M, Kaleem I, Qin S Y, Dai D Z, Liu G Y, Li C. Process Biochem., 2010, 45:1916.
[10] Chen L, Wei B, Zhang X, Li C. Small, 2013, 9:2331.
[11] Zou S, Liu G, Kaleem I, Li C. Process Biochem., 2013, 48:358.
[12] Sorgedrager M J, van Rantwijk F, Huisman G W, Sheldon R A. Adv. Synth. Catal., 2008, 350:2322.
[13] 牛凡凡(Niu F F), 聂昌军(Nie C J), 陈勇(Chen Y), 孙小玲(Sun X L). 化学进展(Prog. Chem.), 2014, 26:1942.
[14] Ni Y, Li C X, Zhang J, Shen N D, Bornscheuer U T, Xu J H. Adv. Synth. Catal., 2011, 353:1213.
[15] Kosjek B, Fleitz F J, Dormer P G, Kuethe J T, Devine P N. Tetrahedron-Asymmetry, 2008, 19:1403.
[16] Stueckler C, Winkler C K, Bonnekessel M, Faber K. Adv. Synth. Catal., 2010, 352:2663.
[17] Bernhardt R, Urlacher V B. Appl. Microbiol. Biotechnol., 2014, 98:6185.
[18] Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Nature, 2012, 485:185.
[19] Denard C A, Ren H Q, Zhao H M. Curr. Opin. Chem. Biol., 2015, 25:55.
[20] Rao G D, Lee J K, Zhao H M. Appl. Microbiol. Biotechnol., 2013, 97:5861.
[21] Wu Q, Soni P, Reetz M T. J. Am. Chem. Soc., 2013, 135:1872.
[22] Pham S Q, Pompidor G, Liu J, Li X D, Li Z. Chem. Commun., 2012, 48:4618.
[23] Wang B, Tang X, Ren G, Liu J, Yu H. Biochem. Eng. J., 2009, 46:345.
[24] Wang D, Wang J, Wang B, Yu H. J. Mol. Catal. B Enzym., 2012, 82:18.
[25] Cobb R E, Chao R, Zhao H M. AICHE J., 2013, 59:1432.
[26] Reetz M T, Carballeira J D, Vogel A. Angew. Chem. Int. Edit., 2006, 45:7745.
[27] Wang M, Zhao H M. ACS Catal., 2014, 4:1219.
[28] Li Y F, Hu F J, Wang X M, Cao H, Liu D L, Yao D S. J. Biotechnol., 2013, 163:401.
[29] Scanlon T C, Dostal S M, Griswold K E. Biotechnol. Bioeng., 2014, 111:232.
[30] Han M H, Wang X F, Ding H Y, Jin M Y, Yu L G, Wang J L, Yu X B. Enzyme Microb. Technol., 2014, 54:32.
[31] Tauzin A S, Sulzenbacher G, Lafond M, Desseaux V, Reca I B, Perrier J, Bellincampi D, Fourquet P, Leveque C, Giardina T. Biochimie, 2014, 101C:39.
[32] Shental-Bechor D, Levy Y. Proc. Natl. Acad. Sci. U. S. A., 2008, 105:8256.
[33] Zou S P, Xie L P, Liu Y L, Kaleem I, Zhang G F, Li C. J. Biotechnol., 2012, 157:399.
[34] Zou S P, Huang S, Kaleem I, Li C. J. Biotechnol., 2013, 164:75.
[35] Dabulis K, Klibanov A M. Biotechnol. Bioeng., 1993, 41:566.
[36] Kim H, Choi Y K, Lee J, Lee E, Park J, Kim M J. Angew. Chem. Int. Edit., 2011, 50:10944.
[37] Kim C, Lee J, Cho J, Oh Y, Choi Y K, Choi E, Park J, Kim M J. J. Org. Chem., 2013, 78:2571.
[38] Garcia-Galan C, Barbosa O, Fernandez-Lafuente R. Enzyme Microb. Technol., 2013, 52:211.
[39] Jadhav S B, Singhal R S. Carbohydr. Polym., 2012, 90:1811.
[40] Zhu J Y, Zhang Y F, Lu D N, Zare R N, Ge J, Liu Z. Chem. Commun., 2013, 49:6090.
[41] Castillo B, Sola R J, Ferrer A, Barletta G, Griebenow K. Biotechnol. Bioeng., 2008, 99:9.
[42] Ritter D W, Newton J M, McShane M J. RSC Adv., 2014, 4:28036.
[43] Jia R, Hu Y, Liu L, Jiang L, Zou B, Huang H. ACS Catal., 2013, 3:1976.
[44] Aumiller W M, Davis B W, Hashemian N, Maranas C, Armaou A, Keating C D. J. Phys. Chem. B, 2014, 118:2506.
[45] Reis P, Holmberg K, Watzke H, Leser M E, Miller R. Adv. Colloid Interface Sci., 2009, 147/148:237.
[46] Feng X, Patterson D A, Balaban M, Fauconnier G, Emanuelsson E A C. Chem. Eng. J., 2013, 221:407.
[47] Cacace D N, Keating C D. J. Mat. Chem. B, 2013, 1:1794.
[48] Naushad M, Alothman Z A, Khan A B, Ali M. Int. J. Biol. Macromol., 2012, 51:555.
[49] Goldfeder M, Fishman A. Appl. Microbiol. Biotechnol., 2014, 98:545.
[50] 申刚义(Shen G Y), 于婷婷(Yu W T), 刘美蓉(Liu M R), 崔勋(Cui X). 化学进展(Prog. Chem.), 2013, 25:1198.
[51] Hanefeld U, Gardossi L, Magner E. Chem. Soc. Rev., 2009, 38:453.
[52] DiCosimo R, McAuliffe J, Poulose A J, Bohlmann G. Chem. Soc. Rev., 2013, 42:6437.
[53] Franssen M C R, Steunenberg P, Scott E L, Zuilhof H, Sanders J P M. Chem. Soc. Rev., 2013, 42:6491.
[54] 代云容(Dai Y R), 牛军峰(Niu J F), 殷立峰(Yin L F), 刘佳(Liu J), 蒋国翔(Jiang G X). 化学进展(Prog. Chem.), 2010, 22:1808.
[55] Zhou Z, Hartmann M. Chem. Soc. Rev., 2013, 42:3894.
[56] 胡燚(Hu Y), 刘维明(Liu W M), 邹彬(Zou B), 唐苏苏(Tang S S), 黄和(Huang H). 化学进展(Prog. Chem.), 2010, 22:1656.
[57] Rossi L M, Costa N J S, Silva F P, Wojcieszak R. Green Chem., 2014, 16:2906.
[58] Qiao L, Lv B, Feng X, Li C. J. Biotechnol., 2015, 203:68.
[59] Feng X, Patterson D A, Balaban M, Emanuelsson E A C. Chem. Eng. Res. Des., 2013, 91:1684.
[60] Tielmann P, Kierkels H, Zonta A, Ilie A, Reetz M T. Nanoscale, 2014, 6:6220.
[61] You C, Myung S, Zhang Y H P. Angew. Chem. Int. Edit., 2012, 51:8787.
[62] Haggie P M, Verkman A S. J. Biol. Chem., 2002, 277:40782.
[63] Dueber J E, Wu G C, Malmirchegini G R, Moon T S, Petzold C J, Ullal A V, Prather K L J, Keasling J D. Nat. Biotechnol., 2009, 27:753.
[64] You C, Zhang Y H P. ACS Synth. Biol., 2013, 2:102.
[65] You C, Zhang Y H P. Adv. Biochem. Eng. Biotechnol., 2013, 131:89.
[66] Zhang Y H P. Biotechnol. Adv., 2011, 29:715.
[67] Albertsen L, Chen Y, Bach L S, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen U H. Appl. Environ. Microbiol., 2011, 77:1033.
[68] Andre C, Kim S W, Yu X H, Shanklin J. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:3191.
[69] Li Y, Cirino P C. Biotechnol. Bioeng., 2014, 111:1273.
[70] You C, Chen H G, Myung S, Sathitsuksanoh N, Ma H, Zhang X Z, Li J Y, Zhang Y H P. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:7182.
[71] Hirakawa H, Kakitani A, Nagamune T. Biotechnol. Bioeng., 2013, 110:1858.
[72] Jia F, Narasimhan B, Mallapragada S. Biotechnol. Bioeng., 2014, 111:209.
[73] Watanabe J, Ishihara K. Biomacromolecules, 2006, 7:171.
[74] Jia F, Zhang Y J, Narasimhan B, Mallapragada S K. Langmuir, 2012, 28:17389.
[75] Jia F, Narasimhan B, Mallapragada S K. AICHE J., 2013, 59:355.
[76] Keighron J D, Keating C D. Langmuir, 2010, 26:18992.
[1] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[2] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[3] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[4] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.
[5] 赵亚男, 王梦凡, 齐崴, 苏荣欣, 何志敏. 基于肽组装凝胶的超分子模拟酶[J]. 化学进展, 2016, 28(11): 1664-1671.
[6] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[7] 龚劲松, 李恒, 陆震鸣, 史劲松, 许正宏. 腈水解酶在医药中间体生物催化研究中的最新进展[J]. 化学进展, 2015, 27(4): 448-458.
[8] 石玉刚, 党亚丽, 刘玉华, 白雪. 生物法与化学法制备硫酸软骨素[J]. 化学进展, 2014, 26(08): 1378-1394.
[9] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[10] 颜范勇, 李楚盈, 梁小乐, 代林枫, 王猛, 陈莉*. Baeyer-Villiger氧化反应的不同催化体系[J]. 化学进展, 2013, 25(06): 900-914.
[11] 刘湘, 潘争光, 许建和. 手性芳基邻二醇的不对称合成[J]. 化学进展, 2011, 23(5): 903-913.
[12] 王德先 王梅祥. 含三元环腈的生物转化反应与应用*[J]. 化学进展, 2010, 22(07): 1397-1402.
[13] 郭坤 张京京 李浩然 杜竹玮. 微生物电解电池制氢*[J]. 化学进展, 2010, 22(04): 748-753.
[14] 王梦凡 齐崴 苏荣欣 何志敏. 交联酶聚体技术研究进展*[J]. 化学进展, 2010, 22(01): 173-178.
[15] 唐啸宇 孙洪林 何冰芳. 耐有机溶剂微生物及酶类在生物催化中的应用*[J]. 化学进展, 2009, 21(12): 2726-2733.
阅读次数
全文


摘要