English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1859-1866 DOI: 10.7536/PC140740 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

微生物电化学系统电子中介体

刘利丹1,2, 肖勇*2, 吴义诚2,3, 陈必链*1, 赵峰2   

  1. 1. 福建师范大学生命科学学院 福州 350108;
    2. 中国科学院城市环境研究所 厦门 361021;
    3. 厦门理工学院环境科学与工程学院 厦门 361024
  • 收稿日期:2014-07-01 修回日期:2014-08-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 肖勇, 陈必链 E-mail:yxiao@iue.ac.cn;chenbil@fjnu.edu.cn

Electron Transfer Mediators in Microbial Electrochemical Systems

Liu Lidan1,2, Xiao Yong*2, Wu Yicheng2,3, Chen Bilian*1, Zhao Feng2   

  1. 1. College of Life Sciences, Fujian Normal University, Fuzhou 350108, China;
    2. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    3. School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
  • Received:2014-07-01 Revised:2014-08-01 Online:2014-11-15 Published:2014-09-12

电化学活性微生物与电极之间的胞外电子传递在微生物电化学系统(microbial electrochemical systems,MESs)产能、生物修复等功能的实现中起着关键作用.目前,研究者对微生物胞外电子传递机理了解有限,限制了MESs的应用.相比于需要微生物功能蛋白与电极接触才能发生的直接电子传递,间接电子传递可通过具有可逆氧化还原活性的电子中介体(electron transfer mediators,ETMs)实现电子的传递,从而有效提高微生物胞外电子传递效率.在间接电子转移过程中,ETMs起着中间电子受体和中间电子供体的作用,即被还原后可将电子传递给最终电子受体并被重新还原;理论上每个ETMs分子可以循环数千次,因此ETMs对特定环境下终端氧化物(如铁离子)的循环有着极其显著的作用.本文系统总结了MESs中ETMs及间接电子传递机制近年来的研究进展,并且在此基础上探讨了ETMs在MESs中的研究趋势,以期推动MESs在生物修复、能源生产方面的实际应用.

Extracellular electron transfer (EET) between electrochemically active microorganisms and electrodes plays a key role in microbial electrochemical systems (MESs) functioning of energy generation, bioremediation, etc. At present, researchers have a very limited understanding of the mechanism of EET, which is one of the major bottlenecks in application of MESs. Compared with direct electron transfer which requires a direct contact between microbial functional proteins and electrode, mediated electron transfer use electron transfer mediators (ETMs) which have reversible redox activities accompanies by high-efficiency EET for transporting electrons. ETMs serve as the middle electron acceptor, once reduced, can transfer electrons to terminal electron acceptor where upon it becomes re-oxidized. In principle, ETMs molecules could cycle thousands of times,thus, have a significant effect on the turnover of the terminal oxidant (e.g.iron) in certain circumstances.This review summarizes the recent advances of EET mechanisms with focus on mediated EET in MESs. Furthermore, we have highlighted the research trends of ETMs in MES,which will promote the practical applications of MESs in bioremediation, energy generation and so on.

Contents
1 Introduction
2 Roles of electron transfer mediators in extracellular electron transfer
3 Properties of electron transfer mediators
4 Classification of electron transfer mediators
5 Electron transfer mediators and their electron transfer mechanism
5.1 Exogenous electron transfer mediators
5.2 Endogenous electron transfer mediators
6 Outlook

中图分类号: 

()

[1] Bond D R, Holmes D E, Tender L M, Lovley D R. Science, 2002, 295: 483.
[2] Lovley D R. Nat. Rev. Microbiol., 2006, 4: 797.
[3] Antonopoulou G, Stamatelatou K, Bebelis S, Lyberatos G. Biochem. Eng. J., 2010, 50: 10.
[4] Liu Z D, Li H R. Biochem. Eng. J., 2007, 36: 209.
[5] Lovley D R. Curr. Opin. Biotechnol., 2008, 19: 564.
[6] Hosseini M G, Ahadzadeh I. J. Power Sources, 2012, 220: 292.
[7] Brutinel E D, Gralnick J A. Appl. Microbiol. Biotechnol., 2012, 93: 41.
[8] 肖勇(Xiao Y), 吴松(Wu S), 杨朝晖(Yang Z H), 郑越(Zheng Y), 赵峰(Zhao F). 化学进展(Progress in Chemistry), 2013, 25: 1771.
[9] Deng L, Li F, Zhou S, Huang D, Ni J. Chin. Sci. Bull., 2010, 55: 99.
[10] Velasquez-Orta S B, Head I M, Curtis T P, Scott K, Lloyd J R, von Canstein H. Appl. Microbiol. Biotechnol., 2010, 85: 1373.
[11] Bond D R, Lovley D R. Appl. Environ. Microbiol., 2003, 69: 1548.
[12] Chaudhuri S K, Lovley D R. Nat. Biotechnol., 2003, 21: 1229.
[13] Reguera G, Mccarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435: 1098.
[14] Schroder U. Phys. Chem. Chem. Phys., 2007, 9: 2619.
[15] Kotloski N J, Gralnick J A. mBio, 2013, 4: e00553
[16] Lovley D R. Annu. Rev. Microbiol., 2012, 66: 391.
[17] Logan B E, Hamelers B, Rozendal R A, Schrorder U, Keller J, Freguia S, Aeiterman P, Verstraete W, Rabaey K. Environ. Sci. Technol., 2006, 40: 5181.
[18] Taskan E, Özkaya B, Hasar H. Int. J. Energ. Sci., 2014, 4: 9.
[19] Hao M, Liu X, Feng M, Zhang P, Wang G. J. Power Sources, 2014, 251: 222.
[20] Wang Y, Newman D K. Environ. Sci. Technol., 2008, 42: 2380.
[21] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 3968.
[22] Rabaey K, Boon N, Hofte M, Verstraete W. Environ. Sci. Technol., 2005, 39: 3401.
[23] Watanabe K, Manefield M, Lee M, Kouzuma A. Curr. Opin. Biotechnol., 2009, 20: 633.
[24] Martinez C M, Alvarez L H, Cervantes F J. Biodegradation, 2012, 23: 635.
[25] Bae S, Lee Y, Kwon M J, Lee W. J. Hazard. Mater., 2014, 274: 24.
[26] Yamazaki S, Kano K, Ikeda T, Isawa K, Kaneko T. BBA-Gen Subjects, 1999, 1428: 241.
[27] Kazarinov I A, Ignatova A A, Naumova M N. Russ. J. Electrochem., 2014, 50: 87.
[28] Van Der Zee F R, Cervantes F J. Biotechnol. Adv., 2009, 27: 256.
[29] Yang Y G, Xu M Y, Guo J, Sun G P. Process Biochem., 2012, 47: 1707.
[30] Stams A J M, de Bok F A M, Plugge C M, van Eekert M H A, Dolfing J, Schraa G. Environ. Microbiol., 2006, 8: 371.
[31] Zachara J M, Kukkadapu R K, Peretyazhko T, Bowden M, Wang C M, Kennedy D W, Moore D, Arey B. Geochim. Cosmochim. Acta, 2011, 75: 6330.
[32] Shi Z, Zachara J M, Shi L, Wang Z M, Moore D A, Kennedy D W, Fredrickson J K. Environ. Sci. Technol., 2012, 46: 11644.
[33] Aulenta F, Di Maio V, Ferri T, Majone M. Bioresour. Technol., 2010, 101: 9728.
[34] McKinlay J B, Zeikus J G. Appl. Environ. Microbiol., 2004, 70: 3467.
[35] Sun Y, Shao Y, Peng J, Liu L, Teng B. Sensor. Actuat. B-Chem., 2013, 188: 242.
[36] Park D H, Zeikus J G. Appl. Environ. Microbiol., 2000, 66: 1292.
[37] Chen H, Zhao J, Dai G. J. Hazard. Mater., 2011, 186: 1320.
[38] Sund C J, McMasters S, Crittenden S R, Harrell L E, Sumner J J. Appl. Microbiol. Biotechnol., 2007, 76: 561.
[39] Bhattacharyya A, Stavitski E, Dvorak J, Martínez C E. Geochim. Cosmochim. Acta, 2013, 122: 89.
[40] Kaden J, Galushko A S, Schink B. Arch. Microbiol., 2002, 178: 53.
[41] Ruan C M, Yang F, Lei C H, Deng J Q. Anal. Chem., 1998, 70: 1721.
[42] Wang Y, Kern S E, Newman D K. J. Bacteriol., 2010, 192: 365.
[43] Yamazki S, Kaneko T, Taketomo N, Kano K, Ikeda T. Appl. Microbiol. Biotechnol., 2002, 59: 72.
[44] Wang Y F, Masuda M, Tsujimura S, Kano K. Biotechnol. Bioeng., 2008, 101: 579.
[45] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 3968.
[46] Newman D K, Kolter R. Nature, 2000, 405: 94.
[47] Lovley D R, Coates J D, Bluntharris E L, Phillips E J P, Woodward J C. Nature, 1996, 382: 445.
[48] Coates J D, Cole K A, Chakraborty R, O'connor S M, Achenbach L A. Appl. Environ. Microbiol., 2002, 68: 2445.
[49] Hernandez-Montoya V, Alvarez L H, Montes-Moran M A, Cervantes F J. Geoderma, 2012, 183: 25.
[50] Wu C Y, Zhuang L, Zhou S G, Yuan Y, Yuan T, Li F B. Microb. Biotechnol., 2013, 6: 141.
[51] Klupfel L, Piepenbrock A, Kappler A, Sander M. Nat. Geosci., 2014, 7: 195.
[52] Cory R M, McKnight D M. Environ. Sci. Technol., 2005, 39: 8142.
[53] Mueller R M, North M A, Hati C Y S, Bhattacharyya S. J. Phys. Chem. B, 2011, 115: 3632.
[54] Zhang C, Katayama A. Environ. Sci. Technol., 2012, 46: 6575.
[55] Hong Y, Wu P, Li W, Gu J, Duan S. Appl. Microbiol. Biotechnol., 2012, 93: 2661.
[56] Liu G F, Zhou J T, Ji Q Y, Wang J, Jin R F, Lv H. World. J. Microb. Biot., 2013, 29: 1723.
[57] Shimizu T. J. Inorg. Biochem., 2012, 108: 171.
[58] Min B K, Cheng S A, Logan B E. Water Res., 2005, 39: 1675.
[59] Maithreepala R A, Doong R A. J. Hazard. Mater., 2009, 164: 337.
[60] Liu D, Dong H, Zhao L, Wang H. Geomicrobiol. J., 2013, 31: 53.
[61] Nevin K P, Lovley D R. Environ. Sci. Technol., 2000, 34: 2472.
[62] Zhang G, Burgos W D, Senko J M, Bishop M E, Dong H, Boyanov M I, Kemner K M. Chem. Geol., 2011, 283: 242.
[63] Hosseini M G, Ahadzadeh I. J. Taiwan. Inst. Chem. E, 2013, 44: 617.
[64] Wang K P, Liu Y W, Chen S L. J. Power Sources, 2011, 196: 164.
[65] Liu X W, Sun X F, Chen J J, Huang Y X, Xie J F, Li W W, Sheng G P, Zhang Y Y, Zhao F, Lu R, Yu H Q. Sci. Rep., 2013, 3: 1616.
[66] Rahimnejad M, Najafpour G D, Ghoreyshi A A, Talebnia F, Premier G C, Bakeri G, Kim J R, Oh S E. J. Microbiol., 2012, 50: 575.
[67] Liu R H, Sheng G P, Sun M, Zang G L, Li W W, Tong Z H, Dong F, Lam M H, Yu H Q. Appl. Microbiol. Biotechnol., 2011, 89: 201.
[68] Ahuja E G, Janning P, Mentel M, Graebsch A, Breinbauer R, Hiller W, Costisella B, Thomashow L S, Mavrodi D V, Blankenfeldt W. J. Am. Chem. Soc., 2008, 130: 17053.
[69] Das T, Manefield M. Commun. Integr. Biol., 2013, 6: e23570
[70] Venkataraman A, Rosenbaum M, Arends J B A, Halitschke R, Angenent L T. Electrochem. Commun., 2010, 12: 459.
[71] Abken H J, Tietze M, Brodersen J, Baumer S, Beifuss U, Deppenmeier U. J. Bacteriol., 1998, 180: 2027.
[72] Hernandez M E, Kappler A, Newman D K. Appl. Environ. Microbiol., 2004, 70: 921.
[73] Rabaey K, Boon N, Hofte M, Verstraete W. Environ. Sci. Technol., 2005, 39: 3401.
[74] Pham T H, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K. Appl. Microbiol. Biotechnol., 2008, 77: 1119.
[75] Yong Y C, Yu Y Y, Li C M, Zhong J J, Song H. Biosens. Bioelectron., 2011, 30: 87.
[76] Wang V B, Chua S L, Cao B, Seviour T, Nesatyy V J, Marsili E, Kjelleberg S, Givskov M, Tolker-Nielsen T, Song H, Say J, Loo C, Yang L. PLoS One, 2013, 8: e63129.
[77] Yong X Y, Shi D Y, Chen Y L, Feng J, Xu L, Zhou J, Wang S Y, Yong Y C, Sun Y M, Ouyang P K, Zheng T. Bioresour. Technol., 2014, 152: 220.
[78] Chen J J, Chen W, He H, Li D B, Li W W, Xiong L, Yu H Q. Environ. Sci. Technol., 2013, 47: 1033.
[79] North M A, Bhattacharyya S, Truhlar D G. J. Phys. Chem. B, 2010, 114: 14907.
[80] Tan S L J, Webster R D. J. Am. Chem. Soc., 2012, 134: 5954.
[81] Wu C, Cheng Y Y, Li B B, Li W W, Li D B, Yu H Q. Bioresour. Technol., 2013, 136: 711.
[82] Baron D, Labelle E, Coursolle D, Gralnick J A, Bond D R. J. Biol. Chem., 2009, 284: 28865.
[83] Von Canstein H, Ogawa J, Shimizu S, Lloyd J R. Appl. Environ. Microbiol., 2008, 74: 615.
[84] Bae S, Lee W. Geochim. Cosmochim. Acta, 2013, 114: 144.
[85] Fuller S J, McMillan D G G, Renz M B, Schmidt M, Burke I T, Stewart D I. Appl. Environ. Microbiol., 2014, 80: 128.
[86] Okamoto A, Hashimoto K, Nealson K H, Nakamura R. Proc. Natl. Acad. Sci. U.S.A., 2013, 110: 7856.
[87] Okamoto A, Saito K, Inoue K, Nealson K H, Hashimoto K, Nakamura R. Energ. Environ. Sci., 2014, 7: 1357.
[88] Le Laz S, Kpebe A, Lorquin J, Brugna M, Rousset M. Appl. Microbiol. Biotechnol., 2014, 98: 2699.
[89] Keck A, Klein J, Kudlich M, Stolz A, Knackmuss H J, Mattes R. Appl. Environ. Microbiol., 1997, 63: 3684.
[90] Keck A, Rau J, Reemtsma T, Mattes R, Stolz A, Klein J. Appl. Environ. Microbiol., 2002, 68: 4341.
[91] Lu H, Zhou J, Wang J, Si W, Teng H, Liu G. Bioresour. Technol., 2010, 101: 7196.
[92] Deng L F, Li F B, Zhou S G, Huang D Y, Ni J R. Chin. Sci. Bull., 2010, 55: 99.
[93] Freguia S, Masuda M, Tsujimura S, Kano K. Bioelectrochemistry, 2009, 76: 14.
[94] Crippa P R, Michelini S. J. Photoch. Photobio. B, 1999, 50: 119.
[95] Plonka P M, Grabacka M. Acta Biochim. Pol., 2006, 53: 429.
[96] Turick C E, Caccavo F, Tisa L S. Can. J. Microbiol., 2008, 54: 334.
[97] Bothma J P, De Boor J, Divakar U, Schwenn P E, Meredith P. Adv. Mater., 2008, 20: 3539.
[98] Sajjan S S, Korean J. Microbiol. Biotechnol., 2013, 41: 60.
[99] Turick C E, Caccavo F, Tisa L S. FEMS Microbiol. Lett., 2003, 220: 99.
[100] Chatfield C H, Cianciotto N P. Infect. Immun., 2007, 75: 4062.
[101] Turick C E, Beliaev A S, Zakrajsek B A, Reardon C L, Lowy D A, Poppy T E, Maloney A, Ekechukwu A A. FEMS Microbiol. Ecol., 2009, 68: 223.
[102] Williams J, Trautwein-Schult A, Jankowska D, Kunze G, Squire M A, Baronian K. Appl. Microbiol. Biotechnol., 2014, 98: 2223.
[103] Cao X X, Huang X, Boon N, Liang P, Fan M Z. Electrochem. Commun., 2008, 10: 1392.
[104] Xiang K J, Qiao Y, Ching C B, Li C M. Electrochem. Commun., 2009, 11: 1593.
[105] Kim E, Gordonov T, Bentley W E, Payne G F. Anal. Chem., 2013, 85: 2102.
[106] Ding C M, Liu H, Zhu Y, Wan M X, Jiang L. Energ. Environ. Sci., 2012, 5: 8517.
[107] Liu J, Qiao Y, Lu Z S, Song H, Li C M. Electrochem. Commun., 2012, 15: 50.
[108] Yong Y C, Yu Y Y, Yang Y, Liu J, Wang J Y, Song H. Biotechnol. Bioeng., 2013, 110: 408.ich M, Stolz A, Knackmuss H J, Mattes R. Appl. Environ. Microbiol., 1997, 63: 3684.
[90] Keck A, Rau J, Reemtsma T, Mattes R, Stolz A, Klein J. Appl. Environ. Microbiol., 2002, 68: 4341.
[91] Lu H, Zhou J, Wang J, Si W, Teng H, Liu G. Bioresour. Technol., 2010, 101: 7196.
[92] Deng L F, Li F B, Zhou S G, Huang D Y, Ni J R. Chin. Sci. Bull., 2010, 55: 99.
[93] Freguia S, Masuda M, Tsujimura S, Kano K. Bioelectrochemistry, 2009, 76: 14.
[94] Crippa P R, Michelini S. J. Photoch. Photobio. B., 1999, 50: 119.
[95] Plonka P M, Grabacka M. Acta Biochim. Pol., 2006, 53: 429.
[96] Turick C E, Caccavo F, Tisa L S. Can. J. Microbiol., 2008, 54: 334.
[97] Bothma J P, De Boor J, Divakar U, Schwenn P E, Meredith P. Adv. Mater., 2008, 20: 3539.
[98] Sajjan S S. Korean. J. Microbiol. Biotechnol., 2013, 41: 60.
[99] Turick C E, Caccavo F, Tisa L S. FEMS Microbiol. Lett., 2003, 220: 99.
[100] Chatfield C H, Cianciotto N P. Infect. Immun, 2007, 75: 4062.
[101] Turick C E, Beliaev A S, Zakrajsek B A, Reardon C L, Lowy D A, Poppy T E, Maloney A, Ekechukwu A A. FEMS Microbiol. Ecol., 2009, 68: 223.
[102] Williams J, Trautwein-Schult A, Jankowska D, Kunze G, Squire M A, Baronian K. Appl. Microbiol. Biotechnol., 2014, 98: 2223.
[103] Cao X X, Huang X, Boon N, Liang P, Fan M Z. Electrochem. Commun., 2008, 10: 1392.
[104] Xiang K J, Qiao Y, Ching C B, Li C M. Electrochem. Commun., 2009, 11: 1593.
[105] Kim E, Gordonov T, Bentley W E, Payne G F. Anal. Chem., 2013, 85: 2102.
[106] Ding C M, Liu H, Zhu Y, Wan M X, Jiang L. Energ. Environ. Sci., 2012, 5: 8517.
[107] Liu J, Qiao Y, Lu Z S, Song H, Li C M. Electrochem. Commun., 2012, 15: 50.
[108] Yong Y C, Yu Y Y, Yang Y, Liu J, Wang J Y, Song H. Biotechnol. Bioeng., 2013, 110: 408.

 

[1] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[2] 陈立香, 李祎頔, 田晓春, 赵峰. 革兰氏阳性电活性菌的电子传递及其应用[J]. 化学进展, 2020, 32(10): 1557-1563.
[3] 田晓春, 吴雪娥, 赵峰, 姜艳霞, 孙世刚. 电化学联用技术研究微生物的胞外电子传递机制[J]. 化学进展, 2018, 30(8): 1222-1227.
[4] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[5] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12): 1833-1840.
[6] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
阅读次数
全文


摘要

微生物电化学系统电子中介体