English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1867-1888 DOI: 10.7536/PC140729 前一篇   

• 综述与评论 •

微电子光致抗蚀剂的发展及应用

魏玮1, 刘敬成1, 李虎1, 穆启道2, 刘晓亚*1   

  1. 1. 江南大学化学与材料工程学院 无锡 214122;
    2. 苏州瑞红电子化学品有限公司 苏州 215124
  • 收稿日期:2014-07-01 修回日期:2014-08-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 刘晓亚 E-mail:lxy@jiangnan.edu.cn
  • 基金资助:

    国家重大科技专项(No. 2010ZX02304)资助

Development and Application of Microelectronic Photoresist

Wei Wei1, Liu Jingcheng1, Li Hu1, Mu Qidao2, Liu Xiaoya*1   

  1. 1. School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122;
    2. Suzhou Rui Hong Electronic Chemicals Co. Ltd., Suzhou 215124, China
  • Received:2014-07-01 Revised:2014-08-01 Online:2014-11-15 Published:2014-09-12
  • Supported by:

    The work was supported by the National Science and Technology Major Project of China (No. 2010ZX02304)

光致抗蚀剂,又称光刻胶,是微电子工业中制作大规模和超大规模集成电路不可或缺的核心材料,因其在国民经济和国防建设中具有战略地位而备受研究者关注.本文梳理了光致抗蚀剂从早期的聚乙烯醇肉桂酸酯、环化橡胶-叠氮化合物、近紫外G线(436-nm)和I线(365-nm)酚醛树脂-重氮萘醌类光致抗蚀剂,到深紫外(248-nm和193-nm)、真空紫外(157-nm)光致抗蚀剂,再到极紫外(13.5-nm)、电子束、纳米压印、嵌段共聚物自组装、扫描探针等下一代光刻技术用光致抗蚀剂的发展脉络,综述了其研究进展.重点对深紫外化学增幅型光致抗蚀剂体系进行了总结,包括主体成膜树脂、光产酸剂以及溶解抑制剂、碱性化合物等添加剂,并介绍了下一代光刻技术用光致抗蚀剂的最新研究成果.最后对光致抗蚀剂未来的发展前景和方向进行了展望.

Photoresist is the indispensable and key material used for fabricating large-scale and super-large-scale integrated circuits in microelectronic industry. Due to its strategic role in the construction of national economy and national defense, photoresist has aroused great attention of researchers. Since the birth of the first integrated circuit board in 1959, photoresist has gradually evolved from the resists used for traditional ultraviolet (UV) photolithography, including early polyvinyl cinnamate, cyclized rubber/azide system, near-UV (436-nm G-line and 365-nm I-line) novolac/diazonaphthoquinone photoresists, deep-UV (DUV, 248-nm and 193-nm) and vacuum-UV (157-nm) photoresists, to the resists used for the so-called next generation lithography (NGL), such as extreme-UV lithography (EUVL), electron-beam lithography (EBL), nanoimprint lithography (NIL), block copolymer lithography (BCL), and scanning probe lithography (SPL). In this review, the above evolution of photoresist and its research progress are summarized based on a large amount of literature. Thereinto, DUV chemically amplified photoresists are focused, including matrix resins, photoacid generators, and additives (for example, dissolution inhibitors and basic compounds). In addition, the recent research achievements of the resists for EUVL, EBL, NIL, BCL, and SPL are also highlighted. Finally, the prospect and research directions of photoresist in the future are briefly discussed.

Contents
1 Introduction
2 Polyvinyl cinnamate and cyclized rubber negative-tone photoresists
3 G-line and I-line photoresists
3.1 Novolac/diazonaphthoquinone (DNQ) resists
3.2 Other systems
4 Deep-ultraviolet (DUV) photoresists
4.1 248-nm photoresists
4.2 193-nm photoresists
5 Vacuum-ultraviolet (157-nm) photoresists
6 Resists for next generation lithography (NGL)
6.1 Extreme-ultraviolet lithography (EUVL)
6.2 Electron-beam lithography (EBL)
6.3 Nanoimprint lithography (NIL)
6.4 Block copolymer lithography (BCL)
6.5 Scanning probe lithography (SPL)
7 Conclusions and perspective

中图分类号: 

()

[1] Moore G E. Electron, 1965, 38: 114.
[2] Reichmanis E, Nalamasu O, Houlihan F M. Acc. Chem. Res., 1999, 32: 659.
[3] Ito H. Adv. Polym. Sci., 2005, 172: 37.
[4] 郑金红(Zheng J H). 精细与专用化学品(Fine and Specialty Chemicals), 2006, 14(16): 24.
[5] Hepher M. US 2848328, 1958.
[6] Hepher M, Wagner H M. US 2852379, 1958.
[7] 王朝阳(Wang C Y), 黄学品(Huang X P), 杨继华(Yang J H). 橡胶工业(China Rubber Industry), 2000, 47(8): 464.
[8] 杨继华(Yang J H), 逄束芬(Pang S F), 孙涛(Sun T).特种橡胶制品(Special Purpose Rubber Products), 1992, 13(6): 241.
[9] 王朝阳(Wang C Y), 杨继华(Yang J H), 董为民(Dong W M), 逄束芬(Pang S F).应用化学(Chinese Journal of Applied Chemistry), 1998, 15(6): 57.
[10] 董为民(Dong W M), 逄束芬(Pang S F), 扈晶余(Hu J Y), 杨继华(Yang J H). 应用化学(Chinese Journal of Applied Chemistry), 2000, 17(3): 272.
[11] 余尚先(Yu S X), 顾江楠(Gu J N). 化学通报(Chemistry), 1986,(12): 1.
[12] Pacansky J, Lyerla J R. IBM J. Res. Dev., 1979, 23: 42.
[13] 郑金红(Zheng J H). 影像科学与光化学(Imaging Science and Photochemistry), 2012, 30(2): 81.
[14] Hanabata M, Oi F, Furuta A. Proc. SPIE, 1991, 1466: 132.
[15] Jeffries A, Brzozowy D, Greene N, Kokubo T, Tan S. Proc. SPIE, 1993, 1925: 235.
[16] Xu C B, Zampini A, Sandford H F, Lachowski J, Caemody J. Proc. SPIE, 1999, 3678: 739.
[17] Lazarus R M, Kautz R, Dixit S S. US 4920028, 1990.
[18] Miyamoto H, Nakamura T, Inomata K, Ota T, Tsuji A. Proc. SPIE, 1995, 2438: 223.
[19] Cornett K M, Dorn J B, Lawson M C, Linehan L L, Moreau W M, Smith R J, Spinillo G T. US 5561194, 1996.
[20] Kohara H, Nakayama T, Sato Y, Tanka H. US 4820621, 1989.
[21] Miura T, Shimokawa T, Yumoto Y. US 5110706, 1992.
[22] Kita N. US 4115128, 1978.
[23] Ueda M, Takahashi D, Nakayama T, Haba O. Chem. Mater., 1998, 10: 2230.
[24] Haba O, Haga K, Ueda M, Morikawa O, Konishi H. Chem. Mater., 1999, 11: 427.
[25] Young-Gil K, Kim J B, Fujigaya T, Shibasaki Y, Ueda M. J. Mater. Chem., 2002, 12: 53.
[26] Yu J, Xu N, Liu Z, Wang L. ACS Appl. Mater. Interfaces, 2012, 4: 2591.
[27] Yu J, Xu N, Wei Q, Wang L. J. Mater. Chem. C, 2013, 1: 1160.
[28] Liu J, Wei Q, Wang L. RSC Adv., 2013, 3: 25666.
[29] Chatterjeea S, Ramakrishnan S. Chem. Commun., 2013, 49: 11041.
[30] Ito H, Willson C G, Fréchet J M J. Digest of Technical Papers of 1982 Symposium on VLSI Technology, 1982. 86.
[31] Fréchet J M J, Eichler E, Ito H, Willson C G. Polymer, 1983, 24: 995.
[32] Sanders D P. Chem. Rev., 2010, 110: 321.
[33] 刘建国(Liu J G), 郑家燊(Zheng J S), 李平(Li P). 感光科学与光化学(Photographic Science and Photochemistry), 2006, 24(1): 67.
[34] Conlon D A, Crivello J V, Lee J L, O'Brien M J. Macromolecules, 1989, 22: 509.
[35] Woods R L, Lyons C F, Mueller R, Conway J. Proc. KTI Microelectronics Seminar, 1988. 341.
[36] Hayishi N, Schlegil L. Proc. SPIE, 1991, 1466: 377.
[37] Murata M, Kobayashi E, Yamachika M, Kobayashi Y, Yumoto Y, Miura T. J. Photopolym. Sci. Technol., 1992, 5: 79.
[38] Mizutani K, Sugiyama S. US 8142977 B2, 2012.
[39] Malik S, Blakeney A J, Ferreira L, Maxwell B, Whewell A, Sarubbi T R, Bowden M J, Driessche V V, Fujimori T, Tan S, Aoai T, Uenishi K, Kawabe Y, Kokubo T. Proc. SPIE, 1999, 3678: 388.
[40] Fujimori T, Tan S, Aoai T, Nishiyama F, Yamanaka T, Momota M, Kanna S, Kawabe Y, Yagihara M, Kokubo T, Malik S, Ferreira L. Proc. SPIE, 2000, 3999: 579.
[41] Kamimura S, Kawanishi Y, Wada K, Tsuchimura T. US 8110333 B2, 2012.
[42] Barclay G G, Cronin M F, Dellaguardia R A, Thackeray J W, Ito H, Breyta G. US 5861231, 1999.
[43] Katsuhiko N, Osaka H, Junji N, Kyoto K, Yasunori U, Osaka T. EP 1225479 B1, 2002.
[44] Ahn K D, Koo D I, Kim S J. J. Photopolym. Sci. Technol., 1991, 4: 433.
[45] DiPietro R A, Sooriyakumaran R, Swanson S A, Truong H D. US 7951525 B2, 2011.
[46] Fréchet J M J, Ito H, Willson C G. US 4491628, 1985.
[47] Dektar J L, Hacker N P. J. Am. Chem. Soc., 1990, 112: 6004.
[48] Chung C M, Ahn K D. React. Funct. Polym., 1999, 40: 1.
[49] Wu H, Gonsalves K E. Adv. Funct. Mater., 2001, 11: 271.
[50] Ito H, Nakayama T, Ueda M, Sherwood M, Miler D. Proc. ACS Div. Polym. Mater. Sci. Eng., 1999, 81: 51.
[51] Ito H, Nakayama T, Ueda M. US 6093517, 2000.
[52] Crivello J V, Shim S Y, Smith B W. Chem. Mater., 1994, 6: 2167.
[53] Pawlowski G, Przybilla K J, Spiess W, Wengenroth H, Roschert H. J. Photopolym. Sci. Technol., 1992, 5: 55.
[54] Przybilla K J, Kinoshita Y, Kudo T, Masuda S, Okazaki H, Padmanaban M, Pawlowski G, Roeschert H, Spiess W, Suehiro N. Proc. SPIE, 1993, 1925: 76.
[55] Chang S W, Li Y C, Lin S H, Wang W C. US 6265131 B1, 2001.
[56] Hayashi N, Schlegel L, Ueno T, Shiraishi H, Iwayanagi T. Proc. SPIE, 1991, 1466: 377.
[57] Kihara N, Saito S, Naito T, Ushirogouchi T, Asakawa K, Nakase M. J. Photopolym. Sci. Technol., 1997, 10: 417.
[58] Asakawa K, Ushiroguchi T, Nakase N. Proc. SPIE, 1995, 2438: 563.
[59] Bantu N R, Brunsvold W R, Hefferon G J, Huang W S, Katnani A D, Khofasteh M M, Sooriyakumaran R, Yang D C. US 5733705, 1998.
[60] 郑金红(Zheng J H), 黄志齐(Huang Z Q), 文武(Wen W). 精细化工(Fine Chemicals), 2005, 22(5): 348.
[61] Wallow T I, Allen R D, Brock P J, DiPietro R A, Ito H, Truong H D, Varanasi P R. US 6251560 B1, 2001.
[62] Nakayama O, Yada M. US 2013164675 A1, 2013.
[63] Ichikawa K, Sakamoto H, Fujita S. US 2013095424 A1, 2013.
[64] Fukumoto T, Yada M. US 2013164676 A1, 2013.
[65] Liu C, Li M, Xu C B. US 2013171429 A1, 2013.
[66] Ober M S, Bae Y C, Liu Y, Lee S H, Park J K. US 2013011783 A1, 2013.
[67] Medieros D, Okoroanyanwu U, Willson C G. US 6103445, 2000.
[68] Watanabe T, Kinsho T, Kobayashi T, Sunaga T, Okawa Y, Io H. US 8216766 B2, 2012.
[69] Shin J B, Kim J H, Shin D H, Lee S J. US 2012251952 A1, 2012.
[70] Chen L, Goh Y K, Cheng H H, Smith B W, Xie P, Montgomery W, Whittaker A K, Blakey I. J. Polym. Sci. Pol. Chem., 2012, 50: 4255.
[71] Sooriyakumaran R, Truong H, Sundberg L, Morris M, Hinsberg B, Ito H, Allen R, Huang W S, Goldfarb D, Burns S, Pfeiffer D. Proc. SPIE, 2005, 5753: 329.
[72] Cameron J F, Chan N, Moore K, Pohlers G. Proc. SPIE, 2001, 4345: 106.
[73] Takahashi H, Yamaguchi S, Kataoka S, Shirakawa M, Yoshino F, Saitoh S. US 2013078432 A1, 2013.
[74] Li M, Aqad A, Liu C, Chen C L, Yamada S, Xu C, Mattia J. US 2013137038 A1, 2013.
[75] Yoshida I, Mukai Y, Ichikawa K. US 2013052588 A1, 2013.
[76] Naito T, Asakawa K, Shida N, Ushirogouchi T, Nakase M. Jpn. J. Appl. Phys., 1994, 33: 7028.
[77] Kim S J, Park J H, Kim J H, Kim K D, Lee H, Jung J C, Bok C K, Kim K H. Proc. SPIE, 1996, 3049: 430.
[78] Kajita T, Ishii H, Usui S, Douki K, Chawanya H, Shimokawa T. J. Photopolym. Sci. Technol., 2000, 13: 625.
[79] Maeda K, Nakano K, Iwasa S, Hasegawa E. Microelectron. Eng., 2002, 61/62: 771.
[80] Nakano K, Maeda K, Iwasa S, Hasegawa E. US 5635332, 1997.
[81] Ando N, Takemoto I, Yoshida I, Harada Y. US 8378016 B2, 2013.
[82] Liu S, Varanasi P R. US 2013011789 A1, 2013.
[83] Reichmanis E, Nalamasu O, Houlihan F. Acc. Chem. Res., 1999, 32: 659.
[84] Dabbagh G, Houlihan F M, Rushkin I, Hutton R S, Nalamasu O, Reichmanis E, Gabor A H, Medina A N. Proc. SPIE, 1999, 3678: 86.
[85] Maniscalco J F, Varanasi P R. US 6124074, 2000.
[86] Asakawa K, Ushiroguchi T, Nakase N. Proc. SPIE, 1995, 2438: 563.
[87] Houlihan F M, Kometani J M, Timko A G, Hutton R S, Cirelli R A, Reichmanis E, Nalamasu O, Gabor A H, Medina A N, Biafore J J, Slater S G. J. Photopolym. Sci. Technol., 1998, 11: 419.
[88] Hagiwara Y, Mesch R A, Kawakami T, Okazaki M, Jockusch S, Li Y, Turro N J, Willson C G. J. Org. Chem., 2013, 78: 1730.
[89] Hallett-Tapley G L, Wee T L E, Tran H, Rananavare S B, Blackwell J M, Scaiano J C. J. Mater. Chem. C, 2013, 1: 2657.
[90] Chen K J, Huang W S, Kwong R W L, Liu S, Varanasi P R. US 8236476 B2, 2012.
[91] Lin B J. J. Microlith., Microfab., Microsyst., 2002, 1: 7.
[92] Hirayama T, Takasu R, Sato M, Wakiya K, Yoshida M, Tamura K. US 7371510, 2008.
[93] Yamashita T, Ishikawa T, Yoshida T, Hayamai T, Araki T, Aoyama H, Hagiwara T, Itani T, Fujii K. Proc. SPIE, 2005, 5753: 564.
[94] Takebe Y, Shirota N, Sasaki T, Murata K, Yokokoji O. Proc. SPIE, 2008, 6923: 69231U.
[95] Hata M, Ryoo M H, Choi S J, Cho H K. J. Photopolym. Sci. Technol., 2006, 19: 579.
[96] Ito H, Sundberg L K. US 7358035, 2008.
[97] Rhodes L F, Chang C, Kandanarachchi P, Seger L D, Ishiduka K, Endo K, Ando T. US 7799883 B2, 2010.
[98] Wang D, Trefonas P III, Gallagher M K. US 7776506 B2, 2010.
[99] Lee S H, Kim J W, Oh S K, Park C S, Lee J Y, Kim S S, Lee J W, Kim D B, Kim J, Ban K D, Bok C R, Moon S C. Proc. SPIE, 2007, 6519: 651925.
[100] Willson C G, Roman B J. ACS Nano, 2008, 2: 1323.
[101] Kunz R R, Bloomstein T M, Hardy D E, Goodman R B, Downs D K, Curtin J E. Proc. SPIE, 1999, 3678: 13.
[102] Ito H, Wallraff G M, Fender N, Brock P J, Hinsberg W D, Mahorowala A, Larson C E, Truong H D, Breyta G, Allen R D. J. Vac. Sci. Technol., 2001, B19: 2678.
[103] Feiring A E, Crawford M K, Farnham W B, French R H, Leffew K W, Petrov V A, Schadt III F L, Tran H V, Zumsteg F C. Macromolecules, 2006, 39: 1443.
[104] Tran H V, Hung R J, Chiba T, Yamada S, Mrozek T, Hsieh Y T, Chambers C R, Osborn B P, Trinque B C, Pinnow M J, MacDonald S A, Willson C G. Macromolecules, 2002, 35: 6539.
[105] Hamad A H, Bae Y C, Liu X Q, Ober C K, Houlihan F M, Dabbagh G, Novembre A E. Proc. SPIE, 2002, 4690: 477.
[106] Bae Y C, Weibel G L, Hamad A H, Schmaljohann D, Ober C K. Forefront of lithographic materials research(Eds. Ito H, Khojasteh M, Li W). NY: Society of Plastics Engineers, Mid Hudson Section, 2001. 75.
[107] Bae Y C, Douki K, Yu T, Dai J, Schmaljohann D, Kang S H, Kim K H, Koerner H, Conley W, Miller D, Balasubramanian R, Holl S, Ober C K. J. Photopolym. Sci. Technol., 2001, 14: 613.
[108] Ito H, Wallraff G M, Brock P, Fender N, Truong H, Breyta G, Miller D C, Sherwood M H, Allen R D. Proc. SPIE, 2001, 4345: 273.
[109] Fedynyshyn T H, Mowers W A, Kunz R R, Sinta R F, Sworin M, Cabral A, Curtin J. ACS Symposium Series, 2004, 874: 54.
[110] Ober C K, Douki K, Vohra V R, Kwark Y J, Liu X Q, Conley W, Miller D, Zimmerman P. J. Photopolym. Sci. Technol., 2002, 15: 603.
[111] Kodama S, Kaneko I, Takebe Y, Okada S, Kawaguchi Y, Shida N, Ishikawa S, Toriumi M, Itani T. Proc. SPIE, 2002, 4690: 76.
[112] Fujigaya T, Ando S, Shibasaki Y, Kishimura S, Endo M, Sasago M, Ueda M. J. Photopolym. Sci. Technol., 2002, 15: 643.
[113] Conley W, Miller D, Chambers C, Osborn B, Hung R J, Tran H V, Trinque B C, Pinnow M, Chiba T, McDonald S, Zimmerman P, Dammel R, Romano A, Willson C G. Proc. SPIE, 2002, 4690: 69.
[114] Seligson D, Pan L, King P, Pianetta P. Nucl. Instr. Meth. Phys. Res., A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 1988, A266: 612.
[115] Matsuzawa N N, Oizumi H, Mori S, Irie S, Yano E, Okazaki S, Ishitani A. Microelec. Eng., 2000, 53: 671.
[116] Shirai M, Maki K, Okamura H, Kaneyama K, Itani T. J. Photopolym. Sci. Technol., 2009, 22: 111.
[117] Dai J, Ober C K, Wang L, Cerrina F, Nealey P F. Proc. SPIE, 2002, 4690: 1193.
[118] Kwark Y J, Bravo-Vasquez J P, Ober C K, Cao H B, Deng H, Meagley R P. Proc. SPIE, 2003, 5039: 1204.
[119] Silva A D, Felix N M, Ober C K. Adv. Mater., 2008, 20: 3355.
[120] Silva A D, Ober C K. J. Mater. Chem., 2008, 18: 1903.
[121] Chang S W, Ayothi R, Bratto D, Yang D, Felix N, Cao H B, Deng H, Ober C K. J. Mater. Chem., 2006, 16: 1470.
[122] Kudo H, Suyama Y, Oizumi H, Itani T, Nishikubo T. J. Mater. Chem., 2010, 20: 4445.
[123] 许箭(Xu J), 王双青(Wang S Q), 杨国强(Yang G Q). 第十三届全国光化学学术讨论会论文集(13th China Photochemistry Conference-Abstract). 西安(Xi’an), 2013. 80.
[124] 陈力(Chen L), 王双青(Wang S Q), 杨国强(Yang G Q). 第十三届全国光化学学术讨论会论文集(13th China Photochemistry Conference-Abstract). 西安(Xi’an), 2013. 138.
[125] Jain V, Green D P, Thackeray J W, Bailey B C, Kang S J. US 2013078569 A1, 2013.
[126] Green D P, Jain V, Bailey B C. US 2013157195 A1, 2013.
[127] Thiyagarajan M, Gonsalves K E, Dean K, Sykes E, Charles H. J. Nanosci. Nanotechno., 2005, 5: 1181.
[128] Satyanarayana V S V, Kessler F, Singh V, Scheffer F R, Weibel D E, Ghosh S, Gonsalves K E. ACS Appl. Mater. Interfaces, 2014, 6: 4223.
[129] Trikeriotis M, Krysak M, Chung Y S, Ouyang C, Cardineau B, Brainard R, Ober C K, Giannelis E P, Cho K. Proc. SPIE, 2012, 8322: 83220U.
[130] Ouyang C Y, Chung Y S, Li L, Neisser M, Cho K, Giannelis E P, Ober C K. Proc. SPIE, 2013, 8682: 86820R.
[131] Cardineau B, Re R D, Al-Mashat H, Marnell M, Vockenhuber M, Ekinci Y, Sarma C, Neisser M, Freedman D A, Brainard R L. Proc. SPIE, 2014, 9051: 90511B.
[132] Bratton D, Yang D, Dai J, Ober C K. Polym. Adv. Technol., 2006, 17: 94.
[133] Singh V, Satyanarayana V S V, Sharma S K, Ghosh S, Gonsalves K E. J. Mater. Chem. C, 2014, 2: 2118.
[134] Canalejas-Tejero V, Carrasco S, Navarro-Villoslada F, Fierro J L G, Capel-Sánchez M C, Moreno-Bondi M C, Barrios C A. J. Mater. Chem. C, 2013, 1: 1392.
[135] Yang C C, Chen W C. J. Mater. Chem., 2002, 12: 1138.
[136] Manfrinato V R, Cheong L L, Dun H, Winston D, Smith H I, Berggren K K. Microelectron. Eng., 2011, 88: 3070.
[137] Guerfi Y, Carcenac F, Larrieu G. Microelectron. Eng., 2013, 110: 173.
[138] Currivan J A, Siddiqui S, Ahn S, Tryputen L, Beach G S D, Baldo M A, Ross C A. J. Vac. Sci. Technol. B, 2014, 32: 021601.
[139] Kadota T, Kageyama H, Wakaya F, Gamo K, Shirota Y, J. Photopolym. Sci. Technol., 2000, 13: 203.
[140] Bauer W A C, Neuber C, Ober C K, Schmidt H W. Adv. Mater., 2011, 23: 5404.
[141] Ito H, Nakayama T, Sherwood M, Miller D, Ueda M. Chem. Mater., 2008, 20: 341.
[142] Yamada A, Hattori S, Saito S, Asakawa K, Koshiba T, Nakasugi T. Proc. SPIE, 2010, 7639: 76390S/1.
[143] Gibbons F, Zaid H M, Manickam M, Preece J A, Palmer R E, Robinson A P G. Small, 2007, 3: 2076.
[144] Kim S, Marelli B, Brenckle M A, Mitropoulos A N, Gil E S, Tsioris K, Tao H, Kaplan D L, Omenetto F G. Nature Nanotechnology, 2014, 9: 306.
[145] Guo L J. Adv. Mater., 2007, 19: 495.
[146] Chou S Y, Krauss P R, Renstrom P J. Appl. Phys. Lett., 1995, 67: 3114.
[147] Ruchhoeft P, Colburn M, Choi B, Nounu H, Johnson S, Bailey T, Damle S, Stewart M, Ekerdt J, Sreenivasan S V, Wolfe J C, Willson C G. J. Vac. Sci. Technol. B, 1999, 17: 2965.
[148] Schulz H, Scheer H C, Hoffmann T, Torres C M S, Pfeiffer K, Bleidiessel G, Grutzner G, Cardinaud C, Gaboriau F, Peignon M C, Ahopelto J, Heidari B. J. Vac. Sci. Technol. B, 2000, 18: 1861.
[149] Mekaru H, Noguchi T, Goto H, Takahashi M. Jpn. J. Appl. Phys., 2007, 46: 6355.
[150] Hu W, Crouch A S, Miller D, Aryal M, Luebke K J. Nanotechnology, 2010, 21: 3.
[151] Choi P, Fu P, Guo L J. Adv. Funct. Mater., 2007, 17: 65.
[152] Malaquin L, Carcenac F, Vieu C, Mauzac M. Microelectron. Eng., 2002, 61/62: 379.
[153] Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan S, Ekerdt J, Willson C G. Proc. SPIE, 1999, 3676: 379.
[154] Kim E K, Stewart M D, Wu K, Palmieri F L, Dickey M D, Ekerdt J G, Willson C G. J. Vac. Sci. Technol. B, 2005, 23: 2967.
[155] Cheng X, Guo L J, Fu P F. Adv. Mater., 2005, 17: 1419.
[156] Mele E, Di Benedetto F, Persano L, Cingolani R, Pisignano D. Nano Lett., 2005, 5: 1915.
[157] Li D, Guo L J. Appl. Phys. Lett., 2006, 88: 63513.
[158] Nielsen T, Nilsson D, Bundgaard F, Shi P, Szabo P, Geschke O, Kristensen A. J. Vac. Sci. Technol. B, 2004, 22: 1770.
[159] Cheng L J, Kao M T, Meyhfer E, Guo L J. Small, 2005, 1: 409.
[160] Hirai Y, Tanaka Y. J. Photopolym. Sci. Technol., 2002, 15: 475.
[161] Matsui S, Igaku Y, Ishigaki H, Fujita J, Ishida M, Ochiai Y, Namatsu H, Komuro M. J. Vac. Sci. Technol. B, 2003, 21: 688.
[162] Liu S, Xu Z, Sun T, Zhao W, Wu X, Ma Z, Xu H, He J, Chen C. Appl. Phys. A-Mater., 2014, 115: 979.
[163] Jeong H, Song H, Park Y, Kwon II K, Jo K, Lee H, Jung G Y. Adv. Mater., 2014, 26: 3445.
[164] Tang C, Lennon E M, Fredrickson G H, Kramer E J, Hawker C J. Science, 2008, 322: 429.
[165] Zhao Y, Sivaniah E, Hashimoto T. Macromolecules, 2008, 41: 9948.
[166] Park S, Lee D H, Xu J, Kim B, Hong S W, Jeong U, Xu T, Russell T P. Science, 2009, 323: 30.
[167] Cushen J D, Otsuka I, Bates C M, Halila S, Fort S, Rochas C, Easley J A, Rausch E L, Thio A, Borsali R, Willson C G, Ellison C J. ACS Nano, 2012, 6: 3424.
[168] Cushen J D, Bates C M, Rausch E L, Dean L M, Zhou S X, Willson C G, Ellison C J. Macromolecules, 2012, 45: 8722.
[169] Kennemur J G, Hillmyer M A, Bates F S. Macromolecules, 2012, 45: 7228.
[170] Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47: 2.
[171] Stoykovich M P, Muller M, Kim S O, Solak H H, Edwards E W, de Pablo J J, Nealey P F. Science, 2005, 308: 1442.
[172] Jung Y S, Chang J B, Verploegen E, Berggren K K, Ross C A. Nano Lett., 2010, 10: 1000.
[173] Tada Y, Yoshida H, Ishida Y, Hirai T, Bosworth J K, Dobisz E, Ruiz R, Takenaka M, Hayakawa T, Hasegawa H. Macromolecules, 2011, 45: 292.
[174] Wang J, de Jeu W H, Speiser M, Kreyes A, Ziener U, Magerl D, Philipp M, Muller-Buschbaum P, Moller M, Mourran A. Soft Matter, 2013, 9: 1337.
[175] Majewski P W, Gopinadhan M, Osuji C O. J. Polym. Sci., Part B: Polym. Phys., 2012, 50: 2.
[176] Singh G, Yager K G, Smilgies D M, Kulkarni M M, Bucknall D G, Karim A. Macromolecules, 2012, 45: 7107.
[177] Park S M, Liang X, Harteneck B D, Pick T E, Hiroshiba N, Wu Y, Helms B A, Olynick D L. ACS Nano, 2011, 5: 8523.
[178] Ji S, Liu C C, Liu G, Nealey P F. ACS Nano, 2009, 4: 599.
[179] Jeong S J, Kim S O. J. Mater. Chem., 2011, 21: 5856.
[180] Piner R D, Zhu J, Xu F, Hong S H, Mirkin C A. Science, 1999, 283: 661.
[181] Xie Z, Zhou X, Tao X, Zheng Z. Macromol. Rapid Commun., 2012, 33: 359.
[182] Gotsmann B, Knoll A W, Pratt R, Frommer J, Hedrick J L, Duerig U, Adv. Funct. Mater., 2010, 20: 1276.
[183] Kingsley J W, Ray S K, Adawi A M, Leggett G J, Lidzey D G. Appl. Phys. Lett., 2008, 93: 213103.
[184] Vettiger P, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche M I, Rothuizen H E, Stutz R, Widmer R, Binnig G K, IBM J. Res. Dev., 2000, 44: 323.
[185] Gotsmann B, Knoll A W, Pratt R, Frommer J, Hedrick J L, Duerig U. Adv. Funct. Mater., 2010, 20: 1276.
[186] Hernandez-Santana A, Irvine E, Faulds K, Graham D. Chem. Sci., 2011, 2: 211.
[187] Kaestner M, Rangelow I W. Proc. SPIE, 2012, 8323: 83231G.
[188] Lee W K, Dai Z T, King W P, Sheehan P E. Nano Lett., 2010, 10: 129.
[189] Hernandez-Santana A, Mackintosh A R, Guilhabert B, Kanibolotsky A L, Dawson M D, Skabara P J, Graham D. J. Mater. Chem., 2011, 21: 14209.
[190] Li L, Hirtz M, Wang W, Du C, Fuchs H, Chi L. Adv. Mater., 2010, 22: 1374.
[191] Barczewski M, Walheim S, Heiler T, Blaszczyk A, Mayor M, Schimmel T. Langmuir, 2010, 26: 3623.

[1] 刘锡洹. 发展中的电子化工材料[J]. 化学进展, 1995, 7(03): 173-.
阅读次数
全文


摘要

微电子光致抗蚀剂的发展及应用