English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1832-1839 DOI: 10.7536/PC140723 前一篇   后一篇

• 综述与评论 •

冷冻干燥法制备聚合物基新型材料及其应用

张晓敏, 张力, 贺雪英, 吴俊涛*   

  1. 北京航空航天大学化学与环境学院 仿生智能界面科学与技术教育部重点实验室 北京 100191
  • 收稿日期:2014-07-01 修回日期:2014-07-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 吴俊涛 E-mail:wjt@buaa.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51373007, 51003004)、北京市自然科学基金项目(No.2142019)、国家重点基础研究发展计划(973)项目(No. 2010CB934700, 2012CB933200)、中央高校基本科研业务费专项资金和教育部留学回国人员科研启动基金资助

Fabrication and Application of New Polymer-Based Materials by Freeze-Drying

Zhang Xiaomin, Zhang Li, He Xueying, Wu Juntao*   

  1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, College of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received:2014-07-01 Revised:2014-07-01 Online:2014-11-15 Published:2014-09-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51373007, 51003004), the Beijing Natural Science Foundation (No.2142019), the National Basic Research Program of China (No.2010CB934700, 2012CB933200), the Fundamental Research Funds for the Central Universities, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

冷冻干燥法是一种环境友好、经济高效的制备通孔先进材料的成型方法,采用冷冻干燥技术高效可控地构筑多孔结构材料备受关注.近年来采用冷冻干燥法制备出的聚合物基新型材料,在不同功能材料领域展现出广阔的应用前景.本文综述了国内外通过冷冻干燥法制备聚合物新型材料的研究进展,对其在生物医学、环境保护、导电以及气体检测方面的应用进行了总结,并展望了其发展趋势.

The freeze-drying technique is an attractive method because it is an environmental friendly and cost-effective shaping process for preparing advanced materials with interconnecting pore channels or pore gradients in bodies. Freeze-drying technology is a kind of methods to build porous structural material efficiently and controllably. In recent years many new polymer-based materials prepared by freeze-drying have exhibited broad applications as functional materials. This article reviews the progress of advanced polymer materials prepared by freeze-drying, and summerizes the applications in the field of materials engineering, environment, biomedicine and other prospects. The research prospects and directions of this rapidly developing field are also briefly addressed.

Contents
1 Introduction
2 The fabrication of polymer-based materials by direct freeze-drying
2.1 Solution freeze-drying
2.2 Emulsion freeze-drying
3 The fabrication of polymer-based materials by indirect freeze-drying
4 Applications of polymer-based materials prepared by freeze-drying
4.1 The application in tissue engineering and medicine
4.2 The application in the fields of adsorption and separation
4.3 The application in conduct electricity and gas detection
5 Conclusion

中图分类号: 

()

[1] Tang Z, Kotov N A, Magonov S, Ozturk B.Nat.Mater., 2003, 2: 413.
[2] Sellinger A, Weiss P M, Nguyen A, Lu Y, Assink R A, Gong W, Brinker C J. Nature, 1998, 394: 256.
[3] Martin C R. Chem. Mater., 1996, 8: 1739.
[4] Steinhart M, Wehrspohn R B, Gåsele U, Wendorff J H. Angew. Chem. Int. Ed., 2004, 43: 1334.
[5] Yuan J, Walther A, Müller A H. Phys. Status. Solidi (B)., 2010, 247: 2436.
[6] Jang J, Bae J, Park E. Adv. Funct. Mater., 2006, 16: 1400.
[7] Saleh M, Tiwari J N, Kemp K C, Yousuf M, Kim K S. Environ. Sci. Technol., 2013, 47: 5467.
[8] Ren L, Hardy C G, Tang C. J. Am. Chem. Soc., 2010, 132: 8874.
[9] Hardy C G, Tang C. J. Polym. Sci. Pol. Phys., 2013, 51: 2.
[10] Keng P Y, Kim B Y, Shim I B, Sahoo R, Veneman P E, Armstrong N R, Yoo H. ACS Nano, 2009, 3: 3143.
[11] Korth B D, Keng P, Shim I, Bowles S E, Tang C, Kowalewski T, Nebesny K W, Pyun J. J. Am. Chem. Soc., 2006, 128: 6562.
[12] Ferrer M L, Esquembre R, Ortega I, Mateo C R, del Monte F. Chem. Mater., 2006, 18: 554.
[13] Zhang H, Long J, Cooper A I. J. Am. Chem. Soc., 2005, 127: 13482.
[14] Zhang H, Cooper A I. Adv. Mater., 2007, 19: 1529.
[15] Yang F, Qu X, Cui W, Bei J, Yu F, Lu S, Wang S. Biomaterials, 2006, 27: 4923.
[16] Stokols S, Tuszynski M H. Biomaterials, 2004, 25: 5839.
[17] Deville S, Saiz E, Tomsia A P. Biomaterials, 2006, 27: 5480.
[18] Nishihara H, Mukai S R, Yamashita D, Tamon H. Chem. Mater., 2005, 17: 683.
[19] Mukai S R, Nishihara H, Shichi S, Tamon H. Chem. Mater., 2004, 16: 4987.
[20] Deville S, Saiz E, Tomsia A P. Acta Mater., 2007, 55: 1965.
[21] Yoon B H, Choi W Y, Kim H E, Kim J H, Koh Y H. Scripta. Mater., 2008, 58: 537.
[22] Gutiérrez M C, Jobbágy M, Rapún N, Ferrer M L, del Monte F. Adv. Mater., 2006, 18: 1137.
[23] Deville S, Saiz E, Nalla R K, Tomsia A P. Science, 2006, 311: 515.
[24] Shi Q, An Z, Tsung C K, Liang H, Zheng N, Hawker C J, Stucky G D. Adv. Mater., 2007, 19: 4539.
[25] Gutiérrez M C, Ferrer M L, del Monte F. Chem. Mater., 2008, 20: 634.
[26] Arndt E M, Gawryla M D, Schiraldi D A. J. Mater. Chem., 2007, 17: 3525.
[27] Gawryla M D, van den Berg O, Weder C, Schiraldi D A. J. Mater. Chem., 2009, 19: 2118.
[28] Somlai L S, Bandi S A, Schiraldi D A, Mathias L J. Aiche J., 2006, 52: 1162.
[29] Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K., Chem. Rev., 2012, 112: 3959.
[30] Dawson R, Cooper A I, Adams D J. Prog. Polym. Sci., 2012, 37: 530.
[31] Madihally S V, Matthew H W. Biomaterials, 1999, 20: 1133.
[32] Sehaqui H, Salajková M, Zhou Q, Berglund L A. Soft.Matter., 2010, 6: 1824.
[33] Alizadeh M, Abbasi F, Khoshfetrat A B, Ghaleh H. Mat. Sci. Eng. C-Mater., 2013, 33: 3958.
[34] Liu Y, An M, Qiu H X, Wang L. Polym-Plast. Technol., 2013, 52: 1154.
[35] Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. Nat Mater., 2005, 4: 787.
[36] Recknor J B, Recknor J C, Sakaguchi D S, Mallapragada S K. Biomaterials., 2004, 25: 2753.
[37] Matsuzaka K, Walboomers X, De Ruijter J, Jansen J. Biomaterials, 1999, 20: 1293.
[38] Dawson R, Cooper A I, Adams D J. Prog. Polym. Sci., 2012, 37: 530.
[39] Kang H W, Tabata Y, Ikada Y. Biomaterials, 1999, 20: 1339.
[40] 李喆(Li Z), 赵莉(Zhao L), 崔磊(Cui L), 曹林谊(Cao L Y). 组织工程与重建外科(Journal of Tissue Engineering and Reconstructive Surgery), 2006, 2(2): 92.
[41] Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J. Acta Biomaterialia, 2010, 6: 1167.
[42] Im S H, Jeong U, Xia Y. Nature Materials, 2005, 4: 671.
[43] Zhang H, Edgar D, Murray P, Rak-Raszewska A, Glennon-Alty L, Cooper A I. Adv. Funct. Mater., 2008, 18: 222.
[44] Qian L, Ahmed A, Foster A, Rannard S P, Cooper A I, Zhang H. J. Mater. Chem., 2009, 19: 5212.
[45] Deville S, Saiz E, Tomsia A P. Acta. Mater., 2007, 55: 1965.
[46] Halloran J. Science, 2006, 311: 479.
[47] Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O. Science, 2008, 322: 1516.
[48] Launey M, Munch E, Alsem D, Barth H, Saiz E, Tomsia A, Ritchie R. Acta. Mater., 2009, 57: 2919.
[49] Launey M, Munch E, Alsem D, Barth H, Saiz E, Tomsia A, Ritchie R. Journal of the Royal Society Interface, 2010, 7: 741.
[50] Bandi S, Bell M, Schiraldi D A. Macromolecules, 2005, 38: 9216.
[51] Yaszemski M J, Payne R G, Hayes W C, Langer R, Mikos A G. Biomaterials, 1996, 17: 175.
[52] Jagur-Grodzinski J. Polym. Advan. Technol., 2006, 7: 395.
[53] Vacanti C, Vacanti J. Otolaryng. Clin. N. Am., 1994, 27: 263.
[54] 吴林波(Wu L B), 丁建东(Ding J D). 功能高分子学报(Journal of Functional Polymers), 2003,16(1): 91.
[55] 姚响(Yao X), 王晓工(Wang X G). 化学进展(Progress in Chemistry), 2009, 21(7): 1547.
[56] 李沁华(Li Q H), 王迪(Wang D). 中国组织工程研究(Chinese Journal of Tissue Engineering Research), 2012, 16(29): 5441.
[57] Gutiérrez M C, García-Carvajal Z Y, Jobbágy M, Rubio F, Yuste L, Rojo F, Ferrer M L, del Monte F. Adv. Funct. Mater., 2007, 17: 3505.
[58] Choi Y S, Hong S R, Lee Y M, Song K W, Park M H, Nam Y S. Biomaterials, 1999, 20: 409.
[59] Choi Y S, Hong S R, Lee Y M, Song K W, Park M H, Nam Y S. J. Biomed. Mater. Res., 1999, 48: 631.
[60] Choi Y S, Lee S, Hong S R, Lee Y, Song K, Park M. J. Mater. Sci Mater. M., 2001, 12: 67.
[61] Stokols S, Tuszynski M H. Biomaterials, 2004, 25: 5839.
[62] Hu X, Shen H, Yang F, Bei J, Wang S. Biomaterials, 2008, 29: 3128.
[63] Yin W, Yates M. Langmuir, 2008, 24(3): 701.
[64] Grant N C, Cooper A I, Zhang H. ACS Appl. Mater. Inter., 2010, 2: 1400.
[65] 陈洁(Chen J), 彭呈(Peng C), 聂俊(Nie J), 马贵平(Ma G P). 高分子通报(Polymer Bulletin), 2013, (4): 165.
[66] Zhang N, Qiu H, Si Y, Wang W, Gao J. Carbon, 2011, 49: 827.
[67] Alhwaige A A, Agag T, Ishida H, Qutubuddin S. RSC Adv., 2013, 3: 16011.
[68] Korhonen J T, Kettunen M, Ras R H, Ikkala O. ACS Appl. Mater. Inter., 2011, 3: 1813.
[69] Cervin N T, Aulin C, Larsson P T, Wgberg L. Cellulose, 2012, 19: 401.
[70] Li R, Chen C, Li J, Xu L, Xiao G, Yan D. J. Mater. Chem. A., 2014, 2: 3057.
[71] Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff R S. Adv. Funct. Mater., 2012, 22: 4421.
[72] Li H, Liu L, Yang F. J. Mater. Chem A., 2013, 1: 3446.
[73] Yang S J, Kang J H, Jung H, Kim T, Park C R. J. Mater. Chem. A, 2013, 1: 9427.
[74] Venkateswara Rao A, Hegde N D, Hirashima H. J. Colloid.Iinterf. Sci., 2007, 305: 124.
[75] Gurav J L, Rao A V, Nadargi D, Park H H. J. Mater. Sci., 2010, 45: 503.
[76] Colard C A L, Cave R A, Grossiord N, Covington J A, Bon S A F. Adv. Mater., 2009, 21: 2894.
[77] Barrow M, Zhang H F. J. Mater. Chem., 2012, 22: 11615.
[78] 何洪(He H), 张丁非(Zhang D F), 许向斌(Xu X B), 陈宏(Chen H). 功能材料(Journal of Functional Materials), 2012, 43(1): 130.
[79] 石高全(Shi G Q), 白华(Bai H). 中国材料研讨会(Conference of Chinese Materials Research Society), 2011. 5.
[80] Lee W E, Oh C J, Kang I K, Kwak G. Macromol. Chem. Phys., 2010, 211: 1900.
[81] Lee D, Zhang C, Gao H. Macromol. Chem. Phys., 2014, 215: 669.

[1] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[2] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[3] 卢芸, 李景鹏, 张燕, 仲国瑞, 刘波, 王慧庆. 木基炭微纳功能骨架[J]. 化学进展, 2020, 32(7): 906-916.
[4] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[5] 左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
[6] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[7] 金亨到, 王立, 俞豪杰, 童荣柏, 周卫东. 主链或侧链含二茂铁的聚合物的合成和应用[J]. 化学进展, 2016, 28(1): 51-57.
[8] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[9] 曹锦珠, 王志祥, 陈润锋, 李欢欢, 郑超, 黄维. 1,8-位修饰杂芴类有机光电功能材料的合成与应用[J]. 化学进展, 2013, 25(08): 1350-1361.
[10] 李昂, 张春玲*, 孙国恩, 牟建新*. POMSS配位化合物[J]. 化学进展, 2012, 24(07): 1309-1323.
[11] 马桂林, 许佳, 张明, 王小稳, 尹金玲, 徐建红. 无机质子导体的研究进展[J]. 化学进展, 2011, 23(0203): 441-448.
[12] 密保秀, 王海珊, 高志强, 王旭鹏, 陈润锋, 黄维. 小分子有机电致发光器件和材料的研究及应用[J]. 化学进展, 2011, 23(01): 136-152.
[13] 刘政, 孙丽宁, 施利毅, 张登松. 近红外稀土荧光在功能材料领域的研究进展[J]. 化学进展, 2011, 23(01): 153-164.
[14] 王红飞 张黎明. 多糖基分子印迹功能材料*[J]. 化学进展, 2010, 22(11): 2165-2172.
[15] 朱敦如,齐丽,程慧敏,沈旋,卢伟. Fe(II)自旋交叉分子材料* [J]. 化学进展, 2009, 21(6): 1187-1198.