English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1772-1780 DOI: 10.7536/PC140720 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

钛酸锂基锂离子电池的析气特性

王倩1,2, 张竞择*1,2, 娄豫皖1, 夏保佳1   

  1. 1. 中国科学院上海微系统与信息技术研究所 上海 200050;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2014-07-01 修回日期:2014-08-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 张竞择 E-mail:zjzblue@163.com
  • 基金资助:

    国家自然科学基金项目(No. 51277173, 21373257)和上海市基础重点项目(No. 11JC1414600)资助

Characteristic of Gas Evolution in Lithium-Ion Batteries Using An Anode Based on Lithium Titanate

Wang Qian1,2, Zhang Jingze*1,2, Lou Yuwan1, Xia Baojia1   

  1. 1. Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-07-01 Revised:2014-08-01 Online:2014-11-15 Published:2014-09-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51277173, 21373257) and the Key Basic Research Programs of Science and Technology Commission of Shanghai Municipality(No.11JC1414600)

目前商用锂离子电池主要使用碳负极材料.零应变的钛酸锂被认为是比碳更安全、寿命更长的负极材料,在混合电动汽车和风/光/电并网、智能电网等领域有独特的应用前景.但是,采用钛酸锂负极的锂离子电池在充放电及储存过程中极易发生气胀,从而导致外壳变形、电池向外析气、电池性能急剧下降等问题,这是制约钛酸锂实际应用的最大障碍.本文首先介绍了钛酸锂基锂离子电池的产业发展状况,其采用的正极材料分别为Li(NixCoyMn1-x-y)O2、LiMn2O4、LiFePO4与LiCoO2等四种.针对其气胀问题,从钛酸锂电极材料的界面特性、水分、电解液还原分解、负极电位、杂质等方面综述了相关的最新研究进展.同时结合本课题组的研究工作,从材料、工艺、使用等角度指出了气胀的改进措施,最后,提出钛酸锂基锂离子电池气胀方面亟待解决的问题及今后的研究重点.

At present, carbonaceous materials are extensively adopted as an anode for commercial lithium-ion batteries. Zero-strain lithium titanate is generally considered as a more safe and long-life span anode compared with carbonaceous materials, and it will find specific applications in various fields such as hybrid electric vehicles, wind-light-electricity grids, and smart grids. However, the lithium-ion batteries using the lithium titanate as anode will easily swell during the charge-discharge cycle and storage, thus resulting in shell distortion, gas evolution, performance deterioration, and so on. This greatly prevents the practical application of lithium titanate.In this paper, the industrial developments of the four kinds of lithium-ion batteries using the lithium titanate anode are reviewed, and the associated cathode materials are Li (Nix Coy Mn1-x-y) O2, LiMn2O4, LiFePO4, and LiCoO2, respectively. The latest research progress of the gas evolution mechanism is summarized from the perspectives of the interfacial characteristics, the water content, the electrolyte reductive decomposition, the negative electrode potential, and the impurities. At the same time, combined with the author's research work, the improving measures are put forward from the viewpoints of material, process, and application. Finally, the key issues and prospects of gassing are also commented.

Contents
1 Introduction
2 Industry status of lithium ion battery using lithium titanate as anode materials
3 Interface properties of lithium titanate material
4 The mechanism of gas evolution in lithium-ion batteries using an anode based on lithium titanate
4.1 Moisture
4.2 In the decomposition of electrolyte solution of lithium titanate electrode surface
4.3 Gas evolution reaction and the negative electrode potential
4.4 Impurities
5 Method to suppress gas evolution in lithium-ion batteries using an anode based on lithium titanate
5.1 Remove water or acid
5.2 Optimization of electrolyte
5.3 Surface treatment of lithium titanate material
5.4 Battery temperature and gas evolution
5.5 Optimization of lithium titanate battery manufacture process
6 Conclusion and outlook

中图分类号: 

()

[1] Scharner S, Weppner W, Beurmann P S. J. Electrochem. Soc., 1999,146: 857.
[2] Ma J, Wang C, Wroblewski S. J. Power Sources, 2007, 164: 849.
[3] Norio T, Hiroki I, Takashi K, Yasuhiro H, Yumi F, Keigo H. J. Electrochem. Soc., 2009, 156: A128.
[4] Yi T F, Xie Y, Zhu Y R, Zhu R S, Shen H Y. J. Power Sources, 2013, 222: 448.
[5] Belharouak I, Sun Y K, Lu W, Amine K. J. Electrochem. Soc., 2007, 154: A1083.
[6] Imazaki M, Wang L, Kawai T, Ariyoshi K, Ohzuku T. Electrochim. Acta, 2011, 56: 4576.
[7] Zaghib K, Dontigny M, Perret P, Guerfi A, Ramanathan M, Prakash J, Mauger A, Julien C M. J. Power Sources, 2014, 248: 1050.
[8] Wu K, Yang J, Zhang Y, Wang C Y, Wang D Y. J Appl Electrochem., 2012, 42: 989.
[9] Tetsuya Y, Eto K. Sakai H. US 6645673, 2003.
[10] Spitler T, Prochazka J, Kavan L, Graetzel M, Sugnaux F. EP 1412993, 2009.
[11] Kanda R, Yoshida K. JP 2012180251, 2012.
[12] 吴孟涛(Wu M T), 徐宁(Xu N), 肖彩英(Xiao C Y), 周大桥(Zhou D Q), 孟凡玉(Meng F Y), 黄来和(Huang L H). CN 101262078A,2008.
[13] 崔明(Cui M), 许汉良(Xu H L), 张帆(Zhang F), 黄赛先(Huang S X). CN 101582522A,2009.
[14] 张建(Zhang J), 颜剑(Yan J), 张熙贵(Zhang X G), 刘浩涵(Liu H H), 李佳(Li J), 夏保佳(Xia B J). CN 101414693A,2009.
[15] 苏剑(Su J), 李红兵(Li H B). 机车电传动(Electric Drive for locomotives), 2011, 4: 37.
[16] 王占国(Wang Z G), 龚敏明(Gong M M). 中国铁路(Chinese Railways), 2011, 12: 64.
[17] He Y B, Li B H, Liu M, Zhang C, Lv W, Yang C, Li J, Du H D, Zhang B, Yang Q H, Kim J K, Kang F Y. Scientific Reports, 2012, 2: 1.
[18] Takami N, Inagaki H, Tatebayashi Y, Saruwatari H, Honda K, Egusa S. J. Power Sources, 2013, 244: 469.
[19] 赵永胜(Zhao Y S), 韩恩山(Han E S), 黄金辉(Huang J H). 电池(Battery Bimonthly), 2011, 41(6): 322.
[20] 刘兴江(Liu X J), 杨凯(Yang K), 郭春雨(Guo C Y), 仁惠祺(Ren H Q).电源技术(Chin. J. Power Sources), 2009, 33(2): 109.
[21] 李燕(Li Y), 翟丽娟(Zhai L J), 秦兆东(Qin Z D), 刘志远(Liu Z Y), 朱广燕(Zhu G Y).新材料产业(Adv. Mater. Ind), 2010, 2: 70.
[22] 吴宁宁(Wu N N), 吴可(Wu K), 安富强(An F Q), 田文怀(Tian W H). 电源技术(Chin. J. Power Sources), 2012, 36(2): 175.
[23] 崔明(Cui M), 许汉良(Xu H L), 张帆(Zhang F), 郭付祥(Guo F X), 南俊民(Nan J M). In the 28th Annual Meeting on Power Sources, Journal of South China Normal University, 2009, 103.
[24] 冯祥明(Feng X M), 李璐(Li L), 张建民(Zhang J M), 杨长春(Yang C C). 电池(Battery Bimonthly), 2011, 41(2): 85.
[25] 朱希平(Zhu X P), 贺艳兵(He Y B).应用化工(Appl. Chem. Ind), 2012, 41(5): 884.
[26] 吴晓东(Wu X D). CN 101710753A, 2010.
[27] Shu J. Electrochem. Solid-State Lett., 2008, 11: A238.
[28] Demeaux J, Vito E D, Digabel M L, Galiano H, Montigny B C, Lemordant D. Phys. Chem. Chem. Phys., 2014, 16: 5201.
[29] Song M S, Kim R H, Baek S W, Lee K S, Park K, Benayad A. J. Mater. Chem. A, 2014, 2: 631.
[30] Kitta M, Akita T, Maeda Y, Kohyama M. Langmuir, 2012, 28: 12384.
[31] Yu H Y, Zhang D, Zhu Z, Lu Q. J. Power Sources, 2014, 257: 96.
[32] Gao Y R, Wang Z X, Chen L Q. J. Power Sources, 2014, 245: 684.
[33] Jiang J W, Dahn J R. Electrochim. Acta, 2004, 49, 4599.
[34] Yamaki J, Takatsuji H, Kawamura T, Egashira M. Solid State Ionics, 2002, 148: 241.
[35] Roth E P, Doughty D H, Franklin J. J. Power Sources, 2004, 134: 222.
[36] Kitta M, Matsuda T, Maeda Y, Akita T, Tanaka S, Kido Y, Kohyama M. Surf. Sci., 2014, 619: 5.
[37] Snyder M Q, DeSisto W J, Tripp C P. Appl. Surf. Sci., 2007, 253: 9336.
[38] Nakajima T, Ueno A, Achiha T, Ohzawa Y, Endo M J. Fluorine Chem., 2009, 130: 810.
[39] Ding Z J, Zhao L, Suo L M, Jiao Y, Meng S, Hu Y S, Wang Z X, Chen L Q. Phys. Chem. Chem. Phys., 2011, 13: 15127.
[40] Dedryvère R, Foix D, Franger S, Patoux S, Daniel L, Gonbeau D. J. Phys. Chem. C, 2010, 114: 10999.
[41] Li S R, Chen C H, Xia X, Dahn J R. J. Electrochem. Soc., 2013, 160: A1524.
[42] Wu K, Yang J, Liu Y, Zhang Y, Wang C Y, Xu J M, Ning F, Wang D Y. J. Power Sources, 2013, 237: 285.
[43] Bernhard R, Meini S, Gasteiger H A. J. Electrochem. Soc., 2014, 161: A497.
[44] Belharouak I, Koenig G M, Amine K. J. Power Sources, 2011, 196: 10344.
[45] Belharouak I, Koenig G M, Tan T, Yumoto H, Ota N, Amine K J. Electrochem. Soc., 2012, 159: A1165.
[46] Khan S U M, Shahry M A, Ingler W B. Science, 2002, 297: 2243.
[47] 宁峰(Ning F). 清华大学硕士论文(Master Dissertation Thesis, Tsinghua University), 2011.
[48] Wu K, Yang J, Qiu X Y, Xu J M, Zhang Q Q, Jin J, Zhuang Q C. Electrochim. Acta, 2013, 108: 841.
[49] Onal I, Soyer S, Senkan S. Surf. Sci., 2006, 600: 2457.
[50] Borghols W J H, Hecht D L, Haake U, Chan W, Lafont U, Kelder E M, van Eck E R H, Kentgens A P M, Mulder F M, Wagemaker M J. Electrochem. Soc., 2010, 157: A582.
[51] 杨全生(Yang Q S),刘朋(Liu P). CN 101710623 A,2010.
[52] 吴可(Wu K), 王印萍(Wang Y P), 高雅(Gao Y), 雷向利(Lei X L), 吴宁宁(Wu N N), 王雅和(Wang Y H). CN102055020A,2011.
[53] He Y B, Liu M, Huang Z D, Zhang B, Yu Y, Li B H, Kang F Y, Kim J K. J. Power Sources, 2013, 239: 269.
[54] 吴晓东(Wu X D). CN 101740816A,2010.
[55] Tang B B X, Tan T, Bark D S. CN 101682028A,2010.
[56] 屈丽辉(Qu L H), 江文锋(Jiang W F), 刘彦初(Liu Y C), 夏玉(Xia Y),潘福中(Pan F Z). CN 101901891A, 2010.
[57] He Y B, Ning F, Li B H, Song Q S, Lv W, Du H D, Zhai D Y, Su F Y, Yang Q H, Kang F Y. J. Power Sources, 2012, 202, 253.
[58] 黄东海(Huang D H),刘建生(Liu J S),周邵云(Zhou S Y). 电池(Battery Bimonthly), 2014, 44(2): 80.

[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[5] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[8] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[9] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[10] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[13] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[14] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[15] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
阅读次数
全文


摘要

钛酸锂基锂离子电池的析气特性