English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1849-1858 DOI: 10.7536/PC140707 前一篇   后一篇

• 综述与评论 •

生物医用纳米颗粒表面的两性离子化设计

陈杨军, 刘湘圣, 王海波, 王寅, 金桥*, 计剑*   

  1. 浙江大学高分子科学与工程学系 高分子合成与功能构造教育部重点实验室 杭州 310027
  • 收稿日期:2014-07-01 修回日期:2014-08-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 计剑, 金桥 E-mail:jijian@zju.edu.cn;jinqiao@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 51333005, 21174126, 51103126, 21374095, 51303154, 51025312)资助

Zwitterions in Surface Engineering of Biomedical Nanoparticles

Chen Yangjun, Liu Xiangsheng, Wang Haibo, Wang Yin, Jin Qiao*, Ji Jian*   

  1. Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2014-07-01 Revised:2014-08-01 Online:2014-11-15 Published:2014-09-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51333005, 21174126, 51103126, 21374095, 51303154, 51025312)

生物医用纳米颗粒的表面设计对维持纳米颗粒稳定性和抑制蛋白质非特异性吸附从而实现体内长效循环等具有重要意义.具有细胞膜仿生结构的两性离子界面能通过离子静电作用形成高效水合层,不仅可有效增强纳米颗粒的稳定性和抗免疫清除能力,通过提高体内循环时间增强其"被动"靶向能力,而且当与环境响应性或生物活性分子复合后,还可有效实现纳米颗粒的"主动"靶向功能,因此"两性离子化"已经发展为纳米颗粒表面设计的新策略.本文主要概述了两性离子材料在生物医用纳米表面设计中的应用进展,包括小分子和聚合物两性离子对无机纳米颗粒的表面修饰、聚合物两性离子组装体用于抗肿瘤药物传递等,同时也介绍了混合电荷材料的一些特殊性质和应用.

Surface engineering of biomedical nanoparticles is of great importance to maintain nano-stability, resist nonspecific biomolecular adsorption so as to enhance in vivo circulation time. Cell membrane mimicking zwitterions can form superhydrophilic antifouling surface which helps to maintain colloidal stability and resist immune elimination via electrostatically induced hydration. The stealthy surface prolongs the blood circulation time to reach "passive targeting", further "active targeting" is also available if combined with stimuli-responsive or bioactive molecules. Hence "zwitteration" has been developed as a new surface engineering strategy of biomedical nanoparticles. This review mainly talks about surface engineering of inorganic nanoparticles with small molecular and polymeric zwitterions, zwitterionic polymeric assemblies as drug delivery system and zwitterionic polymeric prodrugs. Introduction of special properities and applications of mixed-charge materials is also involved.

Contents
1 Introduction
2 Surface design of inorganic nanoparticles with zwitterions
2.1 Small molecular zwitterions
2.2 Polymeric zwitterions
3 Zwitterionic polymeric assemblies for drug delivery
3.1 Drug non-covalently loaded assemblies
3.2 Polymeric prodrugs
4 Mixed-charged materials
5 Conclusion and outlook

中图分类号: 

()

[1] Caruso F, Hyeon T, Rotello V M. Chem. Soc. Rev., 2012, 41: 2537.
[2] Liu Y Y, Miyoshi H, Nakamura M. Int. J. Cancer, 2007, 120: 2527.
[3] Sanhai W R, Sakamoto J H, Canady R, Ferrari M. Nat. Nanotech., 2008, 3: 242.
[4] Fang C, Bhattarai N, Sun C, Zhang M Q. Small, 2009, 5: 1637.
[5] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. J. Control. Release, 2000, 65: 271.
[6] Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. J. Control. Release, 2013, 166: 182.
[7] Estephan Z G, Schlenoff P S, Schlenoff J B. Langmuir, 2011, 27: 6794.
[8] 刘红艳(Liu H Y), 周健(Zhou J). 化学进展(Progress in Chemistry), 2012, 24(11): 2187.
[9] Lewis A L. Colloids Surf., B, 2000, 18: 261.
[10] Gong Y K, Winnik F M. Nanoscale, 2012, 4: 360.
[11] Cao Z Q, Jiang S Y. Nano Today, 2012, 7: 404.
[12] Chien H W, Xu X, Ella-Menye J R, Tsai W B, Jiang S Y. Langmuir, 2012, 28: 17778.
[13] Wu J, Lin W F, Wang Z, Chen S F, Chang Y. Langmuir, 2012, 28: 7436.
[14] Zhai X Y, Wang W, Wang C D, Wang Q, Liu W G. J. Mater. Chem., 2012, 22: 23576.
[15] Holmlin R E, Chen X X, Chapman R G, Takayama S, Whitesides G M. Langmuir, 2001, 17: 2841.
[16] Bernards M T, Cheng G, Zhang Z, Chen S F, Jiang S Y. Macromolecules, 2008, 41: 4216.
[17] Chen S F, Jiang S Y. Adv. Mater., 2008, 20: 335.
[18] Jiang S Y, Cao Z Q. Adv. Mater., 2010, 22: 920.
[19] Iwasaki Y, Ishihara K. Anal. Bioanal. Chem., 2005, 381: 534.
[20] Matsuno R, Ishihara K. Nano Today, 2011, 6: 61.
[21] Garcia K P, Zarschler K, Barbaro L, Barreto J A, O'Malley W, Spiccia L, Stephan H, Graham B. Small, DOI: 10.1002/smll.201303540.
[22] Boisselier E, Astruc D. Chem. Soc. Rev., 2009, 38: 1759.
[23] Qiao R R, Yang C H, Gao M Y. J. Mater. Chem., 2009, 19: 6274.
[24] Blaszykowski C, Sheikh S, Thompson M. Chem. Soc. Rev., 2012, 41: 5599.
[25] Kim S T, Saha K, Kim C, Rotello V M. Acc. Chem. Res., 2013, 46: 681.
[26] Choi H S, Liu W, Misra P, Tanaka E, Zimmer J P, Itty Ipe B, Bawendi M G, Frangioni J V. Nat. Biotechnol., 2007, 25: 1165.
[27] Rosen J E, Gu F X. Langmuir, 2011, 27: 10507.
[28] Liu W H, Choi H S, Zimmer J P, Tanaka E, Frangioni J V, Bawendi M. J. Am. Chem. Soc., 2007, 129: 14530.
[29] Breus V V, Heyes C D, Tron K, Nienhaus G U. ACS Nano, 2009, 3: 2573.
[30] Chung Y C, Chiu Y H, Wu Y W, Tao Y T. Biomaterials, 2005, 26: 2313.
[31] Chung Y C, Chen I H, Chen C J. Biomaterials, 2008, 29: 1807.
[32] Jin Q, Xu J P, Ji J, Shen J C. Chem. Commun., 2008, 3058.
[33] Zhou W B, Shao J Y, Jin Q, Wei Q S, Tang J G, Ji J. Chem. Commun., 2010, 46: 1479.
[34] Zhou W B, Liu X S, Ji J. J. Mater. Chem., 2012, 22: 13969.
[35] Ohyanagi T, Nagahori N, Shimawaki K, Hinou H, Yamashita T, Sasaki A, Jin T, Iwanaga T, Kinjo M, Nishimura S. J. Am. Chem. Soc., 2011, 133: 12507.
[36] Liu X S, Zhu H G, Jin Q, Zhou W B, Colvin V L, Ji J. Adv. Healthcare Mater., 2013, 2: 352.
[37] Muro E, Pons T, Lequeux N, Fragola A, Sanson N, Lenkei Z, Dubertret B. J. Am. Chem. Soc., 2010, 132: 4556.
[38] Aldeek F, Muhammed M A H, Palui G, Zhan N Q, Mattoussi H. ACS Nano, 2013, 7: 2509.
[39] Zhan N Q, Palui G, Grise H, Tang H L, Alabugin I, Mattoussi H. ACS Appl. Mater. Interfaces, 2013, 5: 2861.
[40] Estephan Z G, Jaber J A, Schlenoff J B. Langmuir, 2010, 26: 16884.
[41] Estephan Z G, Hariri H H, Schlenoff J B. Langmuir, 2013, 29: 2572.
[42] Wei H, Insin N, Lee J, Han H S, Cordero J M, Liu W H, Bawendi M G. Nano Lett., 2012, 12: 22.
[43] Wei H, Bruns O T, Chen O, Bawendi M G. Integr. Biol., 2013, 5: 108.
[44] Zhou Z J, Wang L R, Chi X Q, Bao J F, Yang L J, Zhao W X, Chen Z, Wang X M, Chen X Y, Gao J H. ACS Nano, 2013,7: 3287.
[45] Kim C K, Ghosh P, Pagliuca C, Zhu Z J, Menichetti S, Rotello V M. J. Am. Chem. Soc., 2009, 131: 1360.
[46] Agasti S S, Chompoosor A, You C C, Ghosh P, Kim C K, Rotello V M. J. Am. Chem. Soc., 2009, 131: 5728.
[47] Yang W, Zhang L, Wang S L, White A D, Jiang S Y. Biomaterials, 2009, 30: 5617.
[48] Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B, Jiang S. Biomaterials, 2010, 31, 6582.
[49] Yuan J J, Armes S P, Takabayashi Y, Prassides K, Leite C A P, Galembeck F, Lewis A L. Langmuir, 2006, 22: 10989.
[50] Yuan J J, Schmid A, Armes S P, Lewis A L. Langmuir, 2006, 22: 11022.
[51] Giovanelli E, Muro E, Sitbon G, Hanafi M, Pons T, Dubertret B, Lequeux N. Langmuir, 2012, 28: 15177.
[52] Chen X J, Lawrence J, Parelkar S, Emrick T. Macromolecules, 2013, 46: 119.
[53] Liu X S, Huang H Y, Liu G Y, Zhou W B, Chen Y J, Jin Q, Ji J. Nanoscale, 2013,5: 3982.
[54] Ma H, Hyun J, Stiller P, Chilkoti A. Adv. Mater., 2004, 16: 338.
[55] Huang C J, Brault N D, Li Y T, Yu Q M, Jiang S Y. Adv. Mater., 2012, 24: 1834.
[56] Jia G W, Cao Z Q, Xue H, Xu Y S, Jiang S Y. Langmuir, 2009, 25: 3196.
[57] Yang W, Liu S J, Bai T, Keefe A J, Zhang L, Ella-Menye J R, Li Y T, Jiang S Y. Nano Today, 2014, 9: 10.
[58] Zhang X A, Lin W F, Chen S F, Xu H, Gu H C. Langmuir, 2011, 27: 13669.
[59] Kataoka K, Harada A, Nagasaki Y. Adv. Drug Delivery Rev., 2001, 47: 113.
[60] Larson N, Ghandehari H. Chem. Mater., 2012, 24: 840.
[61] Du J Z, Tang Y Q, Lewis A L, Armes S P. J. Am. Chem. Soc., 2005, 127: 17982.
[62] Pearson R T, Warren N J, Lewis A L, Armes S P, Battaglia G. Macromolecules, 2013, 46: 1400.
[63] Sugihara S, Blanazs A, Armes S P, Ryan A J, Lewis A L. J. Am. Chem. Soc., 2011, 133: 15707.
[64] Massignani M, LoPresti C, Blanazs A, Madsen J, Armes S P, Lewis A L, Battaglia G. Small, 2009, 5: 2424.
[65] Ukawa M, Akita H, Masuda T, Hayashi Y, Konno T, Ishihara K, Harashima H. Biomaterials, 2010, 31: 6355.
[66] Goda T, Goto Y, Ishihara K. Biomaterials, 2010, 31: 2380.
[67] Tu S, Chen Y W, Qiu Y B, Zhu K, Luo X L. Macromol. Biosci., 2011, 11: 1416.
[68] Xu J P, Ji J, Chen W D, Shen J C. J. Control. Release, 2005, 107: 502.
[69] Liu G Y, Jin Q, Liu X S, Lv L P, Chen C J, Ji J. Soft Matter, 2011, 7: 662.
[70] Wang H B, Xu F M, Wang Y, Liu X S, Jin Q, Ji J. Polym. Chem., 2013, 4: 3012.
[71] Cao Z Q, Yu Q M, Xue H, Cheng G, Jiang S Y. Angew. Chem. Int. Ed., 2010, 49: 3771.
[72] Zhang S Y, Zou J, Zhang F W, Elsabahy M, Felder S E, Zhu J H, Pochan D J, Wooley K L. J. Am. Chem. Soc., 2012, 134: 18467.
[73] Cao J, Xiu K M, Zhu K, Chen Y W, Luo X L. J. Biomed. Mater. Res., Part A, 2012, 100: 2079.
[74] Cao J, Lu A J, Li C L, Cai M T, Chen Y W, Li S, Luo X L. Colloids Surf., B, 2013, 112: 35.
[75] Zhai S Y, Ma Y H, Chen Y Y, Li D, Cao J, Liu Y J, Cai M T, Xie X X, Chen Y W, Luo X L. Polym. Chem., 2014, 5: 1285.
[76] Kratz F, Müller I A, Ryppa C, Warnecke A. ChemMedChem, 2007, 3: 20.
[77] Lee E S, Na K, Bae Y H. J. Control. Release, 2003, 91: 103.
[78] Bae Y, Fukushima S, Harada A, Kataoka K. Angew. Chem. Int. Ed., 2003, 42: 4640.
[79] Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Bioconjugate Chem., 2005, 16: 122.
[80] Meng F H, Zhong Z Y, Feijen J. Biomacromolecules, 2009, 10: 197.
[81] Joralemon M J, McRae S, Emrick T. Chem. Commun., 2010, 46: 1377.
[82] Chen X J, McRae S, Parelkar S, Emrick T. Bioconjugate Chem., 2009, 20: 2331.
[83] McRae Page S, Martorella M, Parelkar S, Kosif I, Emrick T. Mol. Pharm., 2013, 10: 2684.
[84] Chen X J, Parelkar S S, Henchey E, Schneider S, Emrick T. Bioconjugate Chem., 2012, 23: 1753.
[85] McRae Page S, Henchey E, Chen X J, Schneider S, Emrick T. Mol. Pharm., 2014, 11: 1715.
[86] Wang H B, Xu F M, Li D D, Liu X S, Jin Q, Ji J. Polym. Chem., 2013, 4: 2004.
[87] Wang Y, Wang H B, Chen Y J, Liu X S, Jin Q, Ji J. Chem. Commun., 2013, 49: 7123.
[88] Liu X S, Huang H Y, Jin Q, Ji J. Langmuir, 2011, 27: 5242.
[89] Liu X S, Jin Q, Ji Y, Ji J. J. Mater. Chem., 2012, 22: 1916.
[90] Bonitatibus P J, Torres A S, Kandapallil B, Lee B D, Goddard G D, Colborn R E, Marino M E. ACS Nano, 2012, 6: 6650.
[91] Yang H, Heng X P, Hu J W. RSC Adv., 2012, 2: 12648.
[92] Pillai P P, Huda S, Kowalczyk B, Grzybowski B A. J. Am. Chem. Soc., 2013, 135: 6392.
[93] Liu X S, Chen Y J, Li H, Huang N, Jin Q, Ren K F, Ji J. ACS Nano, 2013, 7: 6244.
[94] Mi L, Bernards M T, Cheng G, Yu Q, Jiang S Y. Biomaterials, 2010, 31: 2919.
[95] Xu M, Zhao Y F, Feng M. Langmuir, 2012, 28: 11310.
[96] Li J G, Wang T, Wu D L, Zhang X Q, Yan J T, Du S, Guo Y F, Wang J T, Zhang A F. Biomacromolecules, 2008, 9: 2670.
[97] Huang Y, Tang Z H, Zhang X F, Yu H Y, Sun Y H, Pang X, Chen X S. Biomacromolecules, 2013, 14: 2023.
[98] Yuan Y Y, Mao C Q, Du X J, Du J Z, Wang F, Wang J. Adv. Mater., 2012, 24: 5476.

[1] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.
[2] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[3] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[4] 董志瑞, 仝维鋆*. 剪切响应性药物传递体系[J]. 化学进展, 2018, 30(2/3): 190-197.
[5] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[6] 郑柳春, 李春成*, 肖耀南, 张博, 王召栋. 可生物降解抗污材料[J]. 化学进展, 2017, 29(8): 824-832.
[7] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[8] 宿丹, 第凤, 邢季, 车剑飞, 肖迎红. 导电聚合物在药物可控释放领域的应用[J]. 化学进展, 2014, 26(12): 1962-1976.
[9] 杜娟, 卢瑛, 王祎龙, 郭桂萍, 潘迎捷. 非对称纳米材料的性质及其应用[J]. 化学进展, 2014, 26(12): 2019-2026.
[10] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.
[11] 韩彬, 廖霞俐, 杨波. 基于环糊精的靶向药物传递系统[J]. 化学进展, 2014, 26(06): 1039-1049.
[12] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[13] 何晓燕*, 周文瑞, 徐晓君, 杨武*. 两性离子聚合物的合成及应用[J]. 化学进展, 2013, 25(06): 1023-1030.
[14] 刘红艳, 周健* . 两性离子聚合物的生物应用[J]. 化学进展, 2012, 24(11): 2187-2197.
[15] 方德彩*. [2+2]环加成反应机理的理论研究[J]. 化学进展, 2012, 24(06): 879-885.