English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1801-1810 DOI: 10.7536/PC140454 前一篇   后一篇

• 综述与评论 •

共轭高分子材料荧光颜色的调节机理及方法

陈云, 邵亚, 范丽娟*   

  1. 苏州大学材料与化学化工学部高分子科学与工程系 江苏省先进功能高分子材料设计及应用重点实验室 苏州 215123
  • 收稿日期:2014-04-01 修回日期:2014-08-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 范丽娟 E-mail:ljfan@suda.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21174099, 21374071) 资助

Fluorescent Color Tuning of Conjugated Polymer Materials: Mechanisms and Methods

Chen Yun, Shao Ya, Fan Lijuan*   

  1. Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received:2014-04-01 Revised:2014-08-01 Online:2014-11-15 Published:2014-09-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21174099, 21374071)

近年来,共轭高分子作为荧光材料的研究受到越来越多的关注.共轭高分子相对于小分子发光材料在材料加工和发光性能上均具有极大的优势,从而在生物成像、传感、编码和光电材料等方面均有良好的应用前景,而其发光颜色的调节在某些应用中是极为重要的.本文首先对共轭高分子荧光颜色调节的两大类机理进行了阐述:直接调节共轭聚合物发光体系的能隙以改变发光颜色,或者将具有不同荧光颜色的材料发出的光叠加获得新的表观颜色.我们还对具体的调节手段进行了初步分类,包括物理共混法、共聚法、改变聚合物主链或侧基结构,以及改变共轭高分子聚集态等方法;在列举具体调节手段同时还引入了共轭高分子体系的实例说明,并对其中调节荧光颜色的可能机理进行了探讨.

Conjugated polymers have received ever-increasing attention as fluorescent materials. They have many advantages compared with small-molecular fluorescent materials. As materials, conjugated polymers can be fabricated into different forms, such as thin films by spinning coating or drop casting, nano-/micro- fibers by electrospinning, nano-/micro- spheres, and micelle/vesicle/microtubule/nanoparticles by self-assembly. The great flexibility of conjugated polymers in processing makes it possible for them to meet the demands of different applications. With regard to the photophysics, the broader absorption allows conjugated polymers to be excited by different light sources. In addition, the high resistance to the photobleaching, or photostability, guarantees a long lifetime when conjugated polymers in real applications. These advantages allow conjugated polymers to be used in different fields, ranging from fluorescent bioimaging and sensors, to optical encoding and photoelectric displays. Some applications, such as encoding and display, require that the fluorescent materials have various emission colors. Thus fluorescent color tuning is very important and also very challenging for realization of these applications. This article gives some detailed discussion about the main mechanisms for the color tuning, based on the adjustment of the band gap of the single emission specie, or based on the chromaticity diagram advanced by International Commission on Illumination (CIE) for blending different emission species. The different methods for the color tuning are also discussed, such as physical blending of several emission species, copolymerization of different monomers, varying the substituent or the backbone of conjugated polymers, and changing the state of aggregation. Detailed examples with different chemical structures of polymers are provided to make clear illustrations about these mechanisms/methods.

Contents
1 Introduction
2 The mechanisms for fluorescent color tuning
3 Different methods for fluorescent color tuning of conjugated polymers
3.1 Physical blending
3.2 Copolymerization
3.3 Changing substituents
3.4 Controlling conjugated length
3.5 Varying the aggregations
4 Conclusion

中图分类号: 

()

[1] Kim J S, Ho P K, Murphy C E, Friend R H. Macromolecules, 2004, 37: 2861.
[2] Krebs F C. Sol. Energy Mater. Sol. Cells, 2009, 93: 394.
[3] Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W, Lemmer U, Feldmann J, Scherf U, Müllen K, Gombert A. Adv. Mater., 1998, 10: 920.
[4] Wang X, Kim Y G, Drew C, Ku B C, Kumar J, Samuelson L A. Nano Lett., 2004, 4: 331.
[5] Yoon J, Chae S K, Kim J M. J. Am. Chem. Soc., 2007, 129: 3038.
[6] Liao J H, Swager T M. Langmuir, 2007, 23: 112.
[7] Wang S L, Zhao W, Song J, Cheng S, Fan L J. Macromol. Rapid Commun., 2013, 34: 102.
[8] Kataoka K, Harada A, Nagasaki Y. Adv. Drug Deliv. Rev., 2001, 47: 113.
[9] Yoo H S, Park T G. J. Control. Release, 2001, 70: 63.
[10] Wu C, Chiu D T. Angew. Chem. Int. Ed., 2013, 52: 3086.
[11] Kietzke T, Neher D, Landfester K, Montenegro R, Güntner R, Scherf U. Nat. Mater., 2003, 2: 408.
[12] Zhu C, Liu L, Yang Q, Lv F, Wang S. Chem. Rev., 2012, 112: 4687.
[13] Pu K Y, Liu B. Adv. Funct. Mater., 2011, 21: 3408.
[14] Li K, Liu B. J. Mater. Chem., 2012, 22: 1257.
[15] Wu C, Bull B, Szymanski C, Christensen K, McNeill J. ACS Nano, 2008, 2: 2415.
[16] Chen L, McBranch D, Wang R, Whitten D. Chem. Phys. Lett., 2000, 330: 27.
[17] 吴伟(Wu W), 许海波(Xu H B), 程丝(Cheng S), 范丽娟(Fan L J). 高分子通报(Polym. Bull.), 2012, 9: 1.
[18] Thomas S W, Joly G D, Swager T M. Chem. Rev., 2007, 107: 1339.
[19] He F, Tang Y, Wang S, Li Y, Zhu D. J. Am. Chem. Soc., 2005, 127: 12343.
[20] Kumaraswamy S, Bergstedt T, Shi X, Rininsland F, Kushon S, Xia W, Ley K, Achyuthan K, McBranch D, Whitten D. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 7511.
[21] McQuade D T, Hegedus A H, Swager T M. J. Am. Chem. Soc., 2000, 122: 12389.
[22] Feng X, Yang G, Liu L, Lv F, Yang Q, Wang S, Zhu D. Adv. Mater., 2012, 24: 637.
[23] Hou J, Park M H, Zhang S, Yao Y, Chen L M, Li J H, Yang Y. Macromolecules, 2008, 41: 6012.
[24] Li Y, Zou Y. Adv. Mater., 2008, 20: 2952.
[25] Günes S, Neugebauer H, Sariciftci N S. Chem. Rev., 2007, 107: 1324.
[26] Wu H, Ying L, Yang W, Cao Y. Chem. Soc. Rev., 2009, 38: 3391.
[27] Pei Q, Yu G, Zhang C, Yang Y, Heeger A J. Science, 1995, 269: 1086.
[28] 李永舫(Lin Y F). 化学进展(Prog. Chem.), 2002, 14: 207.
[29] Fan L J, Jones W E. Handbook of Photochemistry and Photophysics of Polymeric Materials. (Allen N S, Ed.). Wiley, 2010. Chapter 1: 1.
[30] Wu C, Peng H, Jiang Y, McNeill J J. Phys. Chem. B, 2006, 110: 14148.
[31] Pan C J, Sugiyasu K, Wakayama Y, Sato A, Takeuchi M. Angew. Chem. Int. Ed., 2013, 52: 10775.
[32] Pan C J, Sugiyasu K, Takeuchi M. Chem. Commun., 2014. DOI: 10.1039/c4cc03594a.
[33] Zhou Y, Sun Q, Tan Z A, Zhong H, Yang C, Li Y. J. Phys. Chem. C, 2007, 111: 6862.
[34] Kuo C P, Chuang C N, Chang C L, Leung M K, Lian H Y, Wu K C. J. Mater. Chem. C, 2013, 1: 2121.
[35] 侯琼(Hou Q), 牛于华(Niu Y H), 杨伟(Yang W), 阳任强(Yang R Q), 袁敏(Yuan M), 曹镛(Cao Y). 高分子学报(Acta Polymerica Sinica), 2003, 2: 161.
[36] Baier M C, Huber J, Mecking S. J. Am. Chem. Soc., 2009, 131: 14267.
[37] Ego C, Marsitzky D, Becker S, Zhang J, Grimsdale A C, Müllen K, MacKenzie J D, Silva C, Friend R H. J. Am. Chem. Soc., 2003, 125: 437.
[38] Fischer C S, Baier M C, Mecking S. J. Am. Chem. Soc., 2013, 135: 1148.
[39] Rong Y, Wu C F, Yu J B, Zhang X J, Ye F M, Zeigler M, Gallina M E, Wu I C, Zhang Y, Chan Y H, Sun W, Uvdal K, Chiu D T. ACS Nano, 2013, 7: 376.
[40] Xu Y, Nagai A, Jiang D. Chem. Commun., 2013, 49: 1591.
[41] Kou Y, Xu Y, Guo Z, Jiang D. Angew. Chem. Int. Ed., 2011, 50: 8753.
[42] Xu Y, Chen L, Guo Z, Nagai A, Jiang D. J. Am. Chem. Soc., 2011, 133: 17622.
[43] Chen L, Honsho Y, Seki S, Jiang D. J. Am. Chem. Soc., 2010, 132: 6742.
[44] Liu X, Xu Y, Jiang D. J. Am. Chem. Soc., 2012, 134: 8738.
[45] Brdas J, Heeger A. J. Chem. Phys. Lett., 1994, 217: 507.
[46] Jin S H, Kang S Y, Yeom I S, Kim J Y, Park S H, Lee K, Gal Y S, Cho H N. Chem. Mater., 2002, 14: 5090.
[47] Hardison L M, Zhao X, Jiang H, Schanze K S, Kleiman V D. J. Phys. Chem. C, 2008, 112: 16140.
[48] Zhao X, Pinto M R, Hardison L M, Mwaura J, Müller J, Jiang H, Witker D, Kleiman V D, Reynolds J R, Schanze K S. Macromolecules, 2006, 39: 6355.
[49] Musick K Y, Hu Q S, Pu L. Macromolecules, 1998, 31: 2933.
[50] Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R, Burns P, Holmes A. Nature, 1990, 347: 539.
[51] Zhang C, Braun D, Heeger A J. J. Appl. Phys., 1993, 73: 5177.
[52] Burn P L, Kraft A, Baigent D, Bradley D D, Brown A R, Friend R H, Gymer R W, Holmes A B, Jackson R W. J. Am. Chem. Soc., 1993, 115: 10117.
[53] Zhao W, Song J, Shao Y, Zhang W, Au A, Fan L J. Macromol. Chem. Phys., 2012, 213: 1913.
[54] Hay M, Klavetter F. J. Am. Chem. Soc., 1995, 117: 7112.
[55] McDonald R N, Campbell T W. J. Am. Chem. Soc., 1960, 82: 4669.
[56] Chen X, Liao J L, Liang Y, Ahmed M, Tseng H E, Chen S A. J. Am. Chem. Soc., 2003, 125: 636.
[57] Shen D Z, Wang L S, Pan Z X, Cheng S, Zhu X, Fan L J. Macromolecules, 2011, 44: 1009.
[58] Jiang H, Zhao X, Schanze K S. Langmuir, 2006, 22: 5541.
[59] Jiang H, Zhao X, Schanze K S. Langmuir, 2007, 23: 9481.

[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[5] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[6] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[7] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[13] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[14] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[15] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.