中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1203-1218 DOI: 10.7536/PC200554 Previous Articles   Next Articles

• Review •

Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques

Zhijun Pan1, Wei Zhuang1,**(), Hongfei Wang2,3,**()   

  1. 1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
    2. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
    3. School of Science, Westlake University, Hangzhou 310024, China
  • Received: Revised: Online: Published:
  • Contact: Wei Zhuang, Hongfei Wang
  • About author:
    ** e-mail: (Wei Zhuang);
  • Supported by:
    the National Natural Science Foundation of China(21727802); the National Natural Science Foundation of China(21873101)
Richhtml ( 30 ) PDF ( 1510 ) Cited
Export

EndNote

Ris

BibTeX

The essence of chemical change is the formation and breaking of chemical bonds. The main feature of condensed matter chemistry is that the dynamic interaction and kinetic coupling between the physical and chemical processes in the molecule and the surrounding environment, not only affect the equilibrium and reaction rate of the chemical reaction of chemical bond formation and breaking process, but also change the direction and outcome of the chemical reaction. Dynamic vibration spectroscopy is one of the most powerful modern spectroscopic characterization techniques for detecting various microscopic molecular details in the condensed phase and on its surface or at its interface. Like the pulsed NMR technology, scientists use a set of carefully designed laser pulses to stimulate the complex optical responses in a condensed matter chemical system. The resulting signal contains a much richer information on reaction mechanism than that with traditional absorption spectra. The microscopic information of the molecules such as their structure, molecular motion, charge and energy transfer can be obtained. In recent years, various dynamic vibrational spectroscopy has been developed and applied in various fields of condensed-state chemistry, especially in the field of solution state and surface/interface state. A series of breakthroughs have been made and are in the process of continuous development. In this article, we briefly review and prospect the basic concepts of dynamic vibration spectroscopy techniques, experimental methods and theoretical frameworks, as well as their important applications in condensed state and surface state chemistry.

Contents

1 Introduction

2 Brief description of the experimental techniques

2.1 Two-dimensional coherent infrared spectroscopy

2.2 Interface selective sum-frequency generation vibrational spectroscopy (SFG-VS)

3 Theoretical description of the dynamics of the solution phase vibrational spectroscopy

3.1 SOS (sum over-states) method

3.2 NISE (numerical integration of the Schrödinger equation) method

3.3 NEP (nonlinear exciton propagation) method

3.4 SLE (stochastic Liouville equations) method

4 Two-dimensional infrared technique and its application to solution phase chemistry

5 Sum-frequency generation vibrational spectroscopy technique and its application to surface and interfacial chemistry

6 Conclusions and outlook

Fig.1 Chemical reactions and thermodynamics under different states and chemical environment(Hess cycle)
Fig.2 (left) Pulse configuration for a heterodyne detected multidimensional four-wave mixing experiment. Signals are recorded versus the three time delays t1, t2, t3, and displayed as 2D correlation plots involving two of the time delays, holding the third time delay fixed;(right top): 2D photon-echo spectra of two coupled vibrations in the phase-matching direction $k_{I}=k_{1}+k_{2}+k_{3}$. ω1 and ω3are the Fourier conjugate variables to t1 and t3. The frequency fluctuations of the two modes are slow and anti-correlated(left panel), slow and correlated(middle panel), fast and anti-correlated(right panel).(Right bottom): Linear absorptions for the three models
Fig.3 Schematic diagram of two-dimensional infrared vibrational echo experiment. An example of vibrational echo pulse sequence and time interferogram is also shown, which is the result of heterodyne detection[28]
Fig.4 (a) Basic principle of sum-frequency generation vibrational spectroscopy[35]; (b) Schematic diagram of experimental device used in time-resolved SFG experiment. The experimental device is configured to study ultrafast spectrum and molecular structure of the interface, solvation, interaction, energy and electron transfer dynamics, etc. of the surface and interface processes. The pump can be incident along the normal of the surface or other angles[28]
Fig.5 Eight Liouville-space pathways(upper) and double-sided Feynman diagrams(lower) for two-dimensional spectroscopy in the rotating wave approximation. Each Liouville-space pathway starts from the upper-left circle, while the double-sided Feynman diagram starts from the bottom[51]
Fig.6 Feynman diagram representing the Liouville space path for the kI signal in the rotating wave approximation where these three pathways are called excited state emission(ESE), ground state bleaching(GSB), and excited state absorption(ESA)[32]
Fig.7 The 2DIR spectrum of the amide I region for β-hairpin Trpzip2 calculated in the TAA and using the NISE.[59]
Fig.8 Broad applications of sum frequency generation vibrational spectroscopy to various scientific problems in the fields of chemistry, materials, energy, environment, and life sciences[36]
Fig.9 Illustration of the SFG-VS.(A) Showing the infrared(IR) and visible(Vis) beams incident in the same plane in a co-propagating geometry, with the SFG signal, the visible beam and the IR beam in the ssp polarization combination. The polarization of the optical field is defined as p polarization when the optical filed vector is within the incident plane, and it is s polarization when the optical field is perpendicular to the incident plane.(B) Various types of SFG processes that can be used to study ground state vibrational spectra and electronic spectra of molecular surfaces and interfaces. Type (a) is called the IR-SFG-VS, the most common single resonance SFG-VS with only the IR frequency in resonance with the ground state vibrational transition of the molecule of interest; Type (b) is called the IR-Vis double resonance SFG-VS(IR-Vis SFG-VS), where the IR frequency is in resonance with the ground state and the visible is in resonance with the electronic resonance of the molecule; Type (c) is called the Vis-IR double resonance SFG-VS(Vis-IR DR-SFG-VS); and the Type (d) is the Vis-Vis SFG-VS[36]
[1]
Polanyi J C, Zewail A H. Acc. Chem. Res., 1995,28(3):119. https://pubs.acs.org/doi/abs/10.1021/ar00051a005

doi: 10.1021/ar00051a005
[2]
Avouris P. Acc. Chem. Res., 1995,28(3):95. https://pubs.acs.org/doi/abs/10.1021/ar00051a002

doi: 10.1021/ar00051a002
[3]
Xu R. Natl. Sci. Rev., 2018,5:1. https://academic.oup.com/nsr/article/5/1/1/4826553

doi: 10.1093/nsr/nwx155
[4]
Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2018,6(2):191. https://academic.oup.com/nsr/article/6/2/191/5173124

doi: 10.1093/nsr/nwy128
[5]
Levine R D. Molecular Reaction Dynamics. Oxford: Cambridge University Press, 2009.
[6]
Nitzan A, Press O U. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford: Oxford University Press, 2006.
[7]
Eisenthal K B. Chem. Rev., 1996,96:1343. https://www.ncbi.nlm.nih.gov/pubmed/11848793

doi: 10.1021/cr9502211 pmid: 11848793
[8]
Arnolds H, Bonn M. Surf. Sci. Rep., 2010,65(2):45. d0496227-670c-4a9c-80a6-d504f24f1857http://www.sciencedirect.com/science/article/pii/S0167572910000026

doi: 10.1016/j.surfrep.2009.12.001
[9]
Robinson G W, Singh S, Krishnan R, Zhu S B, Lee J. J. Phys. Chem., 1990,94(1):4. https://pubs.acs.org/doi/abs/10.1021/j100364a002

doi: 10.1021/j100364a002
[10]
Shelby R M, Harris C B, Cornelius P A. J. Chem. Phys., 1979,70(1):34. http://scitation.aip.org/content/aip/journal/jcp/70/1/10.1063/1.437197

doi: 10.1063/1.437197
[11]
Oxtoby D W. Annu. Rev. Phys. Chem., 1981,32:77. http://www.annualreviews.org/doi/10.1146/annurev.pc.32.100181.000453

doi: 10.1146/annurev.pc.32.100181.000453
[12]
Hynes J T. Annu. Rev. Phys. Chem., 1985,36:573. http://www.annualreviews.org/doi/10.1146/annurev.pc.36.100185.003041

doi: 10.1146/annurev.pc.36.100185.003041
[13]
Hynes J T. Annu. Rev. Phys. Chem., 2015,66:1. https://www.ncbi.nlm.nih.gov/pubmed/25293391

doi: 10.1146/annurev-physchem-040214-121833 pmid: 25293391
[14]
Owrutsky J C, Raftery D, Hochstrasser R M. Annu. Rev. Phys. Chem., 1994,45:519. https://www.ncbi.nlm.nih.gov/pubmed/7811356

pmid: 7811356
[15]
Benjamin I. Chem. Rev., 1996,96(4):1449. https://www.ncbi.nlm.nih.gov/pubmed/11848798

doi: 10.1021/cr950230+ pmid: 11848798
[16]
Ball P. Chem. Rev., 2008,108(1):74. https://www.ncbi.nlm.nih.gov/pubmed/18095715

doi: 10.1021/cr068037a pmid: 18095715
[17]
Gan W, Wu D, Zhang Z, Feng R R, Wang H F. J. Chem. Phys., 2006,124:114705. https://www.ncbi.nlm.nih.gov/pubmed/16555908

doi: 10.1063/1.2179794 pmid: 16555908
[18]
Feng R R, Guo Y, Wang H F. J. Chem. Phys., 2014, 141: 18C507. https://www.ncbi.nlm.nih.gov/pubmed/25399172

doi: 10.1063/1.4895561 pmid: 25399172
[19]
Nihonyanagi S, Mondal J A, Yamaguchi S, Tahara T. Annu. Rev. Phys. Chem., 2013,64:579. https://www.ncbi.nlm.nih.gov/pubmed/23331304

doi: 10.1146/annurev-physchem-040412-110138 pmid: 23331304
[20]
Bagchi B. Chem. Rev., 2005,105:3197. https://www.ncbi.nlm.nih.gov/pubmed/16159150

doi: 10.1021/cr020661+ pmid: 16159150
[21]
Pal S K, Zewail A H. Chem. Rev., 2004,104:2099. https://www.ncbi.nlm.nih.gov/pubmed/15080722

doi: 10.1021/cr020689l pmid: 15080722
[22]
Frauenfelder H, Chen G, Berendzen J, Fenimore P W, Jansson H, McMahon B H, Stroe I R, Swenson J, Young R D. Proc. Natl. Acad. Sci. U. S. A., 2009,106:5129. https://www.ncbi.nlm.nih.gov/pubmed/19251640

doi: 10.1073/pnas.0900336106 pmid: 19251640
[23]
Hamm P, Zanni M. Concepts and Methods of 2D Infrared Spectroscopy. Oxford: Cambridge University Press, 2011.
[24]
Kratochvil H T, Carr J K, Matulef K, Annen A W, Li H, Maj M, Ostmeyer J, Serrano A L, Raghuraman H, Moran S D, Skinner J L, Perozo E, Roux B, Valiyaveetil F I, Zanni M T. Science, 2016,353:1040. https://www.ncbi.nlm.nih.gov/pubmed/27701114

doi: 10.1126/science.aag1447 pmid: 27701114
[25]
Cho M. Two-Dimensional Optical Spectroscopy. CRC Press, 2009.
[26]
Cho M. Coherent Multidimensional Spectroscopy. Singapore: Springer, 2019.
[27]
Cho M H. Chem. Rev., 2008,108:1331. https://www.ncbi.nlm.nih.gov/pubmed/18363410

doi: 10.1021/cr078377b pmid: 18363410
[28]
Fayer M D. Ultrafast Infrared Vibrational Spectroscopy. Taylor & Francis, 2013.
[29]
Qin Y Z, Wang L J, Zhong D P. Proc. Natl. Acad. Sci. U. S. A., 2016,113:8424. https://www.ncbi.nlm.nih.gov/pubmed/27339138

doi: 10.1073/pnas.1602916113 pmid: 27339138
[30]
Lind P A, Daniel R M, Monk C, Dunn R V. (BBA)-Proteins Proteom, 2004,1702(1):103.
[31]
Rinne K F, Gekle S, Netz R R. J. Phys. Chem. A, 2014,118(50):11667. https://www.ncbi.nlm.nih.gov/pubmed/25474321

doi: 10.1021/jp5066874 pmid: 25474321
[32]
Mukamel S. Principles of Nonlinear Optical Spectroscopy. Oxford University Press, 1995.
[33]
Shen Y R. Fundamentals of Sum-Frequency Spectroscopy. Cambridge: Cambridge University Press, 2016.
[34]
Morita A. Theory of Sum Frequency Generation Spectroscopy. Singapore: Springer, 2018.
[35]
Wang H F, Velarde L, Gan W, Fu L. Annu. Rev. Phys. Chem., 2015,66:189. https://www.ncbi.nlm.nih.gov/pubmed/25493712

doi: 10.1146/annurev-physchem-040214-121322 pmid: 25493712
[36]
Wang H F. Prog. Surf. Sci., 2016,91(4):155. https://linkinghub.elsevier.com/retrieve/pii/S0079681616300259

doi: 10.1016/j.progsurf.2016.10.001
[37]
Zhuang W, Hayashi T, Mukamel S. Angew. Chem. Int., 2009,48(21):3750. http://doi.wiley.com/10.1002/anie.v48%3A21

doi: 10.1002/anie.v48:21
[38]
Wang H F, Gan W, Lü R, Rao Y, Wu B H. Int. Rev. Phys. Chem., 2005,24(2):191. http://www.tandfonline.com/doi/abs/10.1080/01442350500225894

doi: 10.1080/01442350500225894
[39]
Buck M, Himmelhaus M. J. Vac. Sci. Technol. A. 2001,19(6):2717. http://scitation.aip.org/content/avs/journal/jvsta/19/6/10.1116/1.1414120

doi: 10.1116/1.1414120
[40]
Tian C S, Shen Y R. Surf. Sci. Reps., 2014,69(2/3):105.
[41]
Richter L J, Petralli-Mallow T P, Stephenson J C. Opt. Lett. 1998,23(20):1594. https://www.ncbi.nlm.nih.gov/pubmed/18091855

doi: 10.1364/ol.23.001594 pmid: 18091855
[42]
Shen Y R. Annu. Rev. Phys. Chem., 2013,64:129. https://www.ncbi.nlm.nih.gov/pubmed/23245523

doi: 10.1146/annurev-physchem-040412-110110 pmid: 23245523
[43]
Smith J P H S V. Anal. Chem., 2004, 76(15): 287 A.
[44]
Hu X H, Wei F, Wang H, Wang H F. J. Phys. Chem. C, 2019,123(24):15071. https://pubs.acs.org/doi/10.1021/acs.jpcc.9b03202

doi: 10.1021/acs.jpcc.9b03202
[45]
Laaser J E, Xiong W, Zanni M T. J. Phys. Chem. B, 2011,115(11):2536. https://www.ncbi.nlm.nih.gov/pubmed/21366211

doi: 10.1021/jp200757x pmid: 21366211
[46]
Laaser J E, Zanni M T. J. Phys. Chem. A, 2013,117(29):5875. https://www.ncbi.nlm.nih.gov/pubmed/23140356

doi: 10.1021/jp307721y pmid: 23140356
[47]
Zhang Z, Piatkowski L, Bakker H J, Bonn M. Nat. Chem., 2011,3:888. https://www.ncbi.nlm.nih.gov/pubmed/22024886

doi: 10.1038/nchem.1158 pmid: 22024886
[48]
Wang J, Clark M L, Li Y, Kaslan C L, Kubiak C P, Xiong W. J. Phys. Chem. Lett., 2015,6(21):4204. https://www.ncbi.nlm.nih.gov/pubmed/26538035

doi: 10.1021/acs.jpclett.5b02158 pmid: 26538035
[49]
Mukamel S. Annu. Rev. Phys. Chem., 2000,51:691. https://www.ncbi.nlm.nih.gov/pubmed/11031297

pmid: 11031297
[50]
Velarde L, Wang H F. Phys. Chem. Chem. Phys., 2013,15:19970. https://www.ncbi.nlm.nih.gov/pubmed/24076622

doi: 10.1039/c3cp52577e pmid: 24076622
[51]
Xu J, Xu R X, Abramavicius D, Zhang H D, Yan Y J. Chin. J. Chem. Phys., 2011,24(5):497. http://cps.scitation.org/doi/10.1088/1674-0068/24/05/497-506

doi: 10.1088/1674-0068/24/05/497-506
[52]
Mukamel S, Abramavicius D. Chem. Rev., 2004,104(4):2073. https://www.ncbi.nlm.nih.gov/pubmed/15080721

doi: 10.1021/cr020681b pmid: 15080721
[53]
Simpson N, Hunt N T. Int. Rev. Phys. Chem., 2015,34(3):361. http://www.tandfonline.com/doi/full/10.1080/0144235X.2015.1061793

doi: 10.1080/0144235X.2015.1061793
[54]
Kubo R. J. Math. Phys., 1963,4(2):174. http://aip.scitation.org/doi/10.1063/1.1703941

doi: 10.1063/1.1703941
[55]
Jansen T L, Zhuang W, Mukamel S. J. Chem. Phys., 2004,121:10577. https://www.ncbi.nlm.nih.gov/pubmed/15549941

doi: 10.1063/1.1807824 pmid: 15549941
[56]
Jansen T L, Knoester J. J. Chem. Phys., 2006,124:044502. https://www.ncbi.nlm.nih.gov/pubmed/16460180

doi: 10.1063/1.2148409 pmid: 16460180
[57]
Jansen T L, Knoester J. J. Phys. Chem. B, 2006,110(45):22910. https://www.ncbi.nlm.nih.gov/pubmed/17092043

doi: 10.1021/jp064795t pmid: 17092043
[58]
Auer B M, Skinner J L. J. Chem. Phys., 2007,127(10):104105. https://www.ncbi.nlm.nih.gov/pubmed/17867735

doi: 10.1063/1.2766943 pmid: 17867735
[59]
Jansen T L C, Ruszel W M. J. Chem. Phys., 2008,128(21):214501. https://www.ncbi.nlm.nih.gov/pubmed/18537427

doi: 10.1063/1.2931941 pmid: 18537427
[60]
Tanimura Y, Kubo R. J. Phys. Soc. Jpn., 1989,58:101. https://journals.jps.jp/doi/10.1143/JPSJ.58.101

doi: 10.1143/JPSJ.58.101
[61]
Woutersen S, Mu Y G, Stock G, Hamm P. Proc. Natl. Acad. Sci. U. S. A., 2001,98(20):11254. https://www.ncbi.nlm.nih.gov/pubmed/11553784

doi: 10.1073/pnas.201169498 pmid: 11553784
[62]
Idrissi A, Bartolini P, Ricci M, Righini R. Phys. Chem. Chem. Phys., 2003,5:4666. http://xlink.rsc.org/?DOI=b305654f

doi: 10.1039/b305654f
[63]
Cowan M L, Bruner B D, Huse N, Dwyer J R, Chugh B, Nibbering E T J, Elsaesser T, Miller R J D. Nature, 2005,434:199. https://www.ncbi.nlm.nih.gov/pubmed/15758995

doi: 10.1038/nature03383 pmid: 15758995
[64]
Piletic I R, Tan H S, Fayer M D. J. Phys. Chem. B, 2005,109:21273. https://www.ncbi.nlm.nih.gov/pubmed/16853758

doi: 10.1021/jp051837p pmid: 16853758
[65]
Tan H S, Piletic I R, Riter R E, Levinger N E, Fayer M D. Phys. Rev. Lett., 2005,94:057405. https://www.ncbi.nlm.nih.gov/pubmed/15783696

doi: 10.1103/PhysRevLett.94.057405 pmid: 15783696
[66]
Fenn E E, Wong D B, Giammanco C H, Fayer M D. J. Phys. Chem. B, 2011,115(40):11658. https://www.ncbi.nlm.nih.gov/pubmed/21899355

doi: 10.1021/jp206903k pmid: 21899355
[67]
Moilanen D E, Wong D, Rosenfeld D E, Fenn E E, Fayer M D. Proc. Natl. Acad. Sci. U S A., 2009,106(2):375. https://www.ncbi.nlm.nih.gov/pubmed/19106293

doi: 10.1073/pnas.0811489106 pmid: 19106293
[68]
Cheatum C M, Tokmakoff A, Knoester J. J. Chem. Phys., 2004,120:8201. https://www.ncbi.nlm.nih.gov/pubmed/15267740

doi: 10.1063/1.1689637 pmid: 15267740
[69]
Smith A W, Tokmakoff A. J. Chem. Phys., 2007,126:045109. https://www.ncbi.nlm.nih.gov/pubmed/17286519

doi: 10.1063/1.2428300 pmid: 17286519
[70]
Smith A W, Tokmakoff A. Angew. Chem. Int. Ed., 2007,46(42):7984. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773
[71]
Smith A W, Lessing J, Ganim Z, Peng C S, Tokmakoff A, Roy S, Jansen T L C, Knoester J. J Phys. Chem. B, 2010,114(34):10913. https://www.ncbi.nlm.nih.gov/pubmed/20690697

doi: 10.1021/jp104017h pmid: 20690697
[72]
Roy S, Lessing J, Meisl G, Ganim Z, Tokmakoff A, Knoester J, Jansen T L C. J. Chem. Phys., 2011,135:234507. https://www.ncbi.nlm.nih.gov/pubmed/22191886

doi: 10.1063/1.3665417 pmid: 22191886
[73]
Lessing J, Roy S, Reppert M, Baer M, Marx D, Jansen T L, Knoester J, Tokmakoff A. J. Am. Chem. Soc., 2012,134(11):5032. https://www.ncbi.nlm.nih.gov/pubmed/22356513

doi: 10.1021/ja2114135 pmid: 22356513
[74]
Zhuang W, Sgourakis N G, Li Z Y, Garcia A E, Mukamel S. Proc. Natl. Acad. Sci. U S A., 2010,107(36):15687. https://www.ncbi.nlm.nih.gov/pubmed/20798063

doi: 10.1073/pnas.1002131107 pmid: 20798063
[75]
Cahoon J F, Sawyer K R, Schlegel J P, Harris C B. Science, 2008,319(5871):1820. https://www.ncbi.nlm.nih.gov/pubmed/18369145

doi: 10.1126/science.1154041 pmid: 18369145
[76]
Rosenfeld D E, Gengeliczki Z, Smith B J, Stack T D P, Fayer M D. Science, 2011,334(6056):634. https://www.ncbi.nlm.nih.gov/pubmed/22021674

doi: 10.1126/science.1211350 pmid: 22021674
[77]
Ohno P E, Wang H F, Geiger F M. Nat. Comm., 2017,8:1032. http://www.nature.com/articles/s41467-017-01088-0

doi: 10.1038/s41467-017-01088-0
[78]
Yan E C Y, Fu L, Wang Z, Liu W. Chem. Rev., 2014,114(17):8471. https://www.ncbi.nlm.nih.gov/pubmed/24785638

doi: 10.1021/cr4006044 pmid: 24785638
[79]
Hu X H, Fu L, Hou J, Zhang Y N, Zhang Z, Wang H F. J. Phys. Chem. Lett., 2020,11(4):1282. https://www.ncbi.nlm.nih.gov/pubmed/31977221

doi: 10.1021/acs.jpclett.9b03470 pmid: 31977221
[80]
Shao C Y, Jin B, Mu Z, Lu H, Zhao Y Q, Wu Z F, Yan L M, Zhang Z S, Zhou Y C, Pan H H, Liu Z M, Tang R K. Sci. Adv., 2019, 5(8): eaaw9569. https://www.ncbi.nlm.nih.gov/pubmed/31497647

doi: 10.1126/sciadv.aaw9569 pmid: 31497647
[81]
De Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, Penn R L, Whitelam S, Joester D, Zhang H Z, Rimer J D, Navrotsky A, Banfield J F, Wallace A F, Michel F M, Meldrum F C, Cölfen H, Dove P M. Science, 2015, 349(6247): aaa6760. https://www.ncbi.nlm.nih.gov/pubmed/26228157

doi: 10.1126/science.aaa6760 pmid: 26228157
[82]
Tuladhar A, Chase Z A, Baer M D, Legg B A, Tao J H, Zhang S, Winkelman A D, Wang Z M, Mundy C J, De Yoreo J J, Wang H F. J. Am. Chem. Soc., 2019,141(5):2135. https://www.ncbi.nlm.nih.gov/pubmed/30615440

doi: 10.1021/jacs.8b12483 pmid: 30615440
[83]
Wang H, Borguet E, Eisenthal K B. J. Phys. Chem. B, 1998,102(25):4927. https://pubs.acs.org/doi/10.1021/jp9806563

doi: 10.1021/jp9806563
[84]
Raschke M B, Hayashi M, Lin S H, Shen Y R. Chem. Phys. Lett., 2002,359(5/6):367. https://linkinghub.elsevier.com/retrieve/pii/S0009261402005602

doi: 10.1016/S0009-2614(02)00560-2
[85]
Wu D, Deng G H, Guo Y, Wang H F. J. Phys. Chem. A, 2009,113(21):6058. https://www.ncbi.nlm.nih.gov/pubmed/19422180

doi: 10.1021/jp901655j pmid: 19422180
[86]
Yang L, Niu Y L, Lin C K, Hayashi M, Zhu C Y, Lin S H. In: Advances in Chemical Physics, 2014. 295.
[87]
Dong H, Lewis N H C, Oliver T A A, Fleming G R. J. Chem. Phys., 2015,142(17):174201. https://www.ncbi.nlm.nih.gov/pubmed/25956092

doi: 10.1063/1.4919684 pmid: 25956092
[88]
Oliver T A A, Lewis N H C, Fleming G R. Proc. Natl. Acad. Sci. U. S. A., 2014,111(28):10061. https://www.ncbi.nlm.nih.gov/pubmed/24927586

doi: 10.1073/pnas.1409207111 pmid: 24927586
[89]
Courtney T L, Fox Z W, Slenkamp K M, Khalil M. J. Chem. Phys., 2015,143(15):154201. https://www.ncbi.nlm.nih.gov/pubmed/26493900

doi: 10.1063/1.4932983 pmid: 26493900
No related articles found!