中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 286-297 DOI: 10.7536/PC190737 Previous Articles   Next Articles

Photochemical Sensing Based on the Aggregation of Organic Dyes

Peng Zhang, Xinjie Guo, Qian Zhang, Caifeng Ding**()   

  1. Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
  • Received: Online: Published:
  • Contact: Caifeng Ding
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21904077); National Natural Science Foundation of China(21422504); Natural Science Foundation of Shandong province(ZR2019BB055); Fund Project from Key Laboratory of Spectrochemical Analysis & Instrumentation(Xiamen University) of Ministry of Education(SCAI1702); Fund Project from Key Laboratory of Spectrochemical Analysis & Instrumentation(Xiamen University) of Ministry of Education(SCAI1703)
Richhtml ( 22 ) PDF ( 674 ) Cited
Export

EndNote

Ris

BibTeX

Organic dyes possess high molar extinction coefficient and good fluorescence emission performance in visible and NIR region, thus they are often used in spectrochemical sensing. Generally, organic dyes usually contain a large π system, and are easy to form assemblies with specific structures through weak intermolecular interactions(such as, hydrogen bonds, halogen bonds, hydrophobic interactions, π-π stacking interactions, van der Waals forces.) in solution. The aggregation process is often accompanied by obvious color or spectral changes. If a specific functional group is introduced into a dye molecule, binding with an analyte induces the aggregation or disaggregation to produce obvious spectral changes, which can be used for the detection of the analyte. Supramolecular aggregates can provide multiple binding sites simultaneously, and have adjustable spatial orientation between assembly units and higher local concentration of sensing binding groups. Therefore, photochemical sensing based on aggregation process shows superior sensing sensitivity and selectivity. In this review, the application of the aggregation of organic dyes in photochemical sensing is reviewed based on our own research work in recent years. Three aspects of induced aggregation, disaggregation and aggregation re-arrangement are discussed respectively, and the future research and development direction of such fluorescent sensing systems are also prospected.

Fig.1 Schematic representation of the relationship between chromophore arrangement and spectral shift based on the molecular exciton theory
Fig.2 Hg2+ induced aggregation of 1 and dissociation of aggregates in the presence of cysteine[30]
Fig.3 Schematic representation of solvent driven molecular organization of 5 and transformation of aggregated State-Ⅱ of 5 to molecularly dissolved State-III in the presence of CTAB micelles, and the transformation of State-Ⅲ into State-Ⅳ via metal ion induced reorganization of 5 in the presence of CTAB micelles[34]
Fig.4 Recognition of ATP by near infrared cyanine dye 27 in DTAB solution with critical aggregation concentration[53]
Fig.5 Molecular structures of probes 32~34 and nanosensors 35~37 for BSA[57]
Fig.6 Schematic illustration of working system 39 toward ACP[65]
Fig.7 The schematic representation of 40 for histidine detection[66]
Fig.8 The mechanism of concentration-dependent self-assembly of SCy dyes in the solid state for selective ammonia gas sensing[68]
Fig.9 Schematic representation of the reversible system for regulation of 43 supramolecular chirality by using G-quadruplex as a template[69]
[1]
Lehn J M , 超分子化学-概念和展望 (Supramolecular Chemistry-Concept and Prospect). 沈兴海等(译)(Shen X H, et al.(Trans.)). 北京: 北京大学出版社( Beijing: Peking University Press), 2002.
[2]
刘育(Liu Y) 尤长城(You C C) 张衡益(Zhang H Y) . 超分子化学-合成受体的分子识别与组装 (Supramolecular Chemistry-Molecular Recognition and Assembly of Synthetic Receptors). 天津:南开大学出版社( Tianjing: Nankai University Press), 2001.
[3]
Würthner F R, Saha-Möller C, Fimmel B, Ogi S, Leowanawat P, Schmidt D . Chem. Rev., 2016,116:962. https://www.ncbi.nlm.nih.gov/pubmed/26270260

doi: 10.1021/acs.chemrev.5b00188 pmid: 26270260
[4]
Chen S, Slattum P, Wang C Y, Zang L . Chem. Rev., 2015,115:11967. https://www.ncbi.nlm.nih.gov/pubmed/26441294

doi: 10.1021/acs.chemrev.5b00312 pmid: 26441294
[5]
Kim H M, Cho B R . Chem. Rev., 2015,115:5014. https://www.ncbi.nlm.nih.gov/pubmed/25938620

doi: 10.1021/cr5004425 pmid: 25938620
[6]
Ashton T D, Jolliffe K A, Pfeffer F M . Chem. Soc. Rev., 2015,44:4547. https://www.ncbi.nlm.nih.gov/pubmed/25673509

doi: 10.1039/c4cs00372a pmid: 25673509
[7]
Bhatia S, Camacho L C, Haag R . J. Am. Chem. Soc., 2016,138:8654. https://www.ncbi.nlm.nih.gov/pubmed/27341003

doi: 10.1021/jacs.5b12950 pmid: 27341003
[8]
Okuro K, Sasaki M, Aida T . J. Am. Chem. Soc., 2016,138:5527. https://www.ncbi.nlm.nih.gov/pubmed/27087468

doi: 10.1021/jacs.6b02664 pmid: 27087468
[9]
Mogaki R, Hashim P K, Okuro K, Aida T . Chem. Soc. Rev., 2017,46:6480. https://www.ncbi.nlm.nih.gov/pubmed/29034942

doi: 10.1039/c7cs00647k pmid: 29034942
[10]
Larissa K S K, Christoph A S, Pall T . Chem. Soc. Rev., 2017,46:2622. https://www.ncbi.nlm.nih.gov/pubmed/28352870

doi: 10.1039/c7cs00063d pmid: 28352870
[11]
Mako T L, Racicot J M, Levine M . Chem. Rev., 2019,119:322. https://www.ncbi.nlm.nih.gov/pubmed/30507166

doi: 10.1021/acs.chemrev.8b00260 pmid: 30507166
[12]
Geninatti C S, Alberti D, Szabo I, Aime S, Djanashvili K . Angew. Chem. Int. Ed., 2013,52:1161. https://www.ncbi.nlm.nih.gov/pubmed/23225599

doi: 10.1002/anie.201207131 pmid: 23225599
[13]
Wasielewski M . R. Acc. Chem. Res., 2009,42:1910. https://www.ncbi.nlm.nih.gov/pubmed/19803479

doi: 10.1021/ar9001735 pmid: 19803479
[14]
Jiang W, Li Y, Wang Z . Acc. Chem. Res., 2014,47:3135. https://www.ncbi.nlm.nih.gov/pubmed/25264816

doi: 10.1021/ar500240e pmid: 25264816
[15]
Hartnett P E, Timalsina A, Matte H S S R, Zhou N, Guo X, Zhao W, Facchetti A, Chang R P H, Hersam M C, Wasielewski M R, Marks T J . J. Am. Chem. Soc., 2014,136:16345. https://www.ncbi.nlm.nih.gov/pubmed/25350908

doi: 10.1021/ja508814z pmid: 25350908
[16]
Brooker L G S, Wllite F L, Heseltine D W, Keyes G H, Dent S G, Vanlare E J J . Photogr. Sci., 1953,1:173.
[17]
Jelley E E . Narure, 1936,138:1009.
[18]
Seheibe G . Angew. Chem., 1936,49:563.
[19]
Kasha M, Rawis H R, El-Bayoumi M A . Pure. Appl. Chem., 1965,11:371.
[20]
Zhang Q, Li S S, Fu C X, Xiao Y Z, Zhang P, Ding C F . J Mater. Chem. B., 2019,7:443. https://www.ncbi.nlm.nih.gov/pubmed/32254731

doi: 10.1039/c8tb02799d pmid: 32254731
[21]
Zhang P, Xiao Y Z, Zhang Q, Zhang Z X, Yu H, Ding C F . New J. Chem., 2019,43:7620.
[22]
Zhang Q, Wang Q, Chen X X, Zhang P, Ding C F, Li Z, Jiang Y B . TRAC-Trend Anal. Chem., 2018,109:32
[23]
Zhang Q, Zhang P, Gong Y, Ding C F . Sens. & Actuat. B, 2019,73.
[24]
Zhang P, Zhang Q, Li S S, Chen W H, Guo X J, Ding C F . J. Mater. Chem. B, 2019,7:1238. https://www.ncbi.nlm.nih.gov/pubmed/32255163

doi: 10.1039/c8tb03023e pmid: 32255163
[25]
Dhiman S, Jain A, Kumar M, George S J . J. Am. Chem. Soc., 2017,139:16568. https://www.ncbi.nlm.nih.gov/pubmed/28845662

doi: 10.1021/jacs.7b07469 pmid: 28845662
[26]
Guo X, Facchetti A, Marks T . J. Chem. Rev., 2014,114:8943. https://www.ncbi.nlm.nih.gov/pubmed/25181005

doi: 10.1021/cr500225d pmid: 25181005
[27]
Chen Z, Wang Q, Wu X, Li Z, Jiang Y B . Chem. Soc. Rev., 2015,44:4249. https://www.ncbi.nlm.nih.gov/pubmed/25714523

doi: 10.1039/c4cs00531g pmid: 25714523
[28]
Wang Q, Li Z, Tao D D, Zhang Q, Zhang P, Guo D P, Jiang Y B . Chem. Commun., 2016,52:12929. https://www.ncbi.nlm.nih.gov/pubmed/27785482

doi: 10.1039/c6cc06075g pmid: 27785482
[29]
Xu Z, Jia S, Wang W, Yuan Z, Ravoo B J, Guo D S . Nat. Chem., 2019. 11:86. https://www.ncbi.nlm.nih.gov/pubmed/30455432

doi: 10.1038/s41557-018-0164-y pmid: 30455432
[30]
Ruan Y B, Li A F, Zhao J S, Shen J S, Jiang Y B . Chem. Commun., 2010,46:4938. https://www.ncbi.nlm.nih.gov/pubmed/20523936

doi: 10.1039/c0cc00630k pmid: 20523936
[31]
Che Y, Yang X M, Zang L . Chem. Commun., 2008,12:1413.
[32]
Zheng H, Yan M, Fan X X, Sun D, Yang S Y, Yang L J, Li J D, Jiang Y B . Chem. Commun., 2012,48:2243. https://www.ncbi.nlm.nih.gov/pubmed/22252219

doi: 10.1039/c2cc17388c pmid: 22252219
[33]
Zheng H, Zhang X J, Cai X, Bian Q N, Yan M, Wu G H, Lai X W, Jiang Y B . Org. Lett., 2012,14:1986. https://www.ncbi.nlm.nih.gov/pubmed/22486889

doi: 10.1021/ol3004047 pmid: 22486889
[34]
Dwivedi A K, Pandeeswar M, Govindaraju T . ACS Appl. Mater. Interfaces., 2014,6:21369. https://www.ncbi.nlm.nih.gov/pubmed/25405529

doi: 10.1021/am5063844 pmid: 25405529
[35]
Weißenstein A, Würthner F . Chem. Commun., 2015,51:3415. https://www.ncbi.nlm.nih.gov/pubmed/25624111

doi: 10.1039/c4cc09443c pmid: 25624111
[36]
Huang Y J, Ouyang W J, Wu X, Li Z, Fossey J S, James T D, Jiang Y B . J. Am. Chem. Soc., 2013,135:1700. https://www.ncbi.nlm.nih.gov/pubmed/23317305

doi: 10.1021/ja311442x pmid: 23317305
[37]
Ma T, Li C, Shi G Q . Langmuir, 2008,24:43. https://www.ncbi.nlm.nih.gov/pubmed/18041856

doi: 10.1021/la702559m pmid: 18041856
[38]
Wu X, Chen X X, Song B N, Huang Y J, Li Z, Chen Z, James T D, Jiang Y B . Chem. Eur. J., 2014,20:11793. https://www.ncbi.nlm.nih.gov/pubmed/25078854

doi: 10.1002/chem.201402627 pmid: 25078854
[39]
Chen X X, Wu X, Zhang P, Zhang M, Song B N, Huang Y J, Li Z, Jiang Y B . Chem. Commun., 2015,51:13630. https://www.ncbi.nlm.nih.gov/pubmed/26226054

doi: 10.1039/c5cc03495g pmid: 26226054
[40]
Li X Y, Guo X D, Cao L X, Xun Z Q, Wang S Q, Li S Y, Li Y, Yang G Q . Angew. Chem. Int. Ed., 2014,53:7809. https://www.ncbi.nlm.nih.gov/pubmed/24909142

doi: 10.1002/anie.201403918 pmid: 24909142
[41]
Wu N, Lan J, Yan L, You J . Chem. Commun., 2014,50:4438. https://www.ncbi.nlm.nih.gov/pubmed/24643794

doi: 10.1039/c4cc00752b pmid: 24643794
[42]
Zhang P, Zhu M S, Luo H, Li Z, Jiang Y B . ChemPlusChem, 2016,81:1326. https://www.ncbi.nlm.nih.gov/pubmed/31964073

doi: 10.1002/cplu.201600419 pmid: 31964073
[43]
He Q, Fan X, Sun S, Li H, Pei Y, Xu Y . RSC Adv., 2015,5:38571.
[44]
Jin B, Zhang X, Zheng W, Liu X, Zhou J, Zhang N, Wang F, Shangguan D . Anal. Chem., 2014,86:7063. https://www.ncbi.nlm.nih.gov/pubmed/24941428

doi: 10.1021/ac501619v pmid: 24941428
[45]
Karpenko I A, Collot M, Richert L, Valencia C, Villa P, Mely Y, Hibert M, Bonnet D, Klymchenko A S . J. Am. Chem. Soc., 2015,137:405. https://www.ncbi.nlm.nih.gov/pubmed/25506627

doi: 10.1021/ja5111267 pmid: 25506627
[46]
Chen C, Wang R, Guo L, Fu N, Dong H, Yuan Y . Org. Lett., 2011,13:1162. https://www.ncbi.nlm.nih.gov/pubmed/21306133

doi: 10.1021/ol200024g pmid: 21306133
[47]
Chen C, Dong H, Chen Y, Guo L, Wang Z, Sun J J, Fu N . Org. Biomol. Chem., 2011,9:8195. https://www.ncbi.nlm.nih.gov/pubmed/22027929

doi: 10.1039/c1ob06519j pmid: 22027929
[48]
Zhu H, Lin Y, Wang G, Chen Y, Lin X, Fu N . Sens. Actuators, B, 2014,198:201.
[49]
Zhu H, Fan J, Chen H, Tang Z, Wang G, Fu N . Dyes Pigm., 2015,113:181.
[50]
Wang K R, An H W, Rong R X, Cao Z R, Li X L . Biosens. Bioelectron., 2014,58:27. https://www.ncbi.nlm.nih.gov/pubmed/24607619

doi: 10.1016/j.bios.2014.02.038 pmid: 24607619
[51]
Cheng G, Fan J, Sun W, Cao J, Hu C, Peng X . Chem. Commun., 2014,50:1018.
[52]
Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, Nagano T . J. Am. Chem. Soc., 2010,132:2795. https://www.ncbi.nlm.nih.gov/pubmed/20136129

doi: 10.1021/ja910090v pmid: 20136129
[53]
Zhang P, Zhu M S, Luo H, Zhang Q, Guo L E, Li Z, Jiang Y B . Anal. Chem., 2017,89:6210. https://www.ncbi.nlm.nih.gov/pubmed/28480717

doi: 10.1021/acs.analchem.7b01175 pmid: 28480717
[54]
Hou T C, Wu Y Y, Chiang P Y, Tan K T . Chem. Sci., 2015,6:4643. https://www.ncbi.nlm.nih.gov/pubmed/28717479

doi: 10.1039/c5sc01330e pmid: 28717479
[55]
Jisha V S, Arun K T, Hariharan M, Ramaiah D J . Am. Chem. Soc., 2006,128:6024. https://www.ncbi.nlm.nih.gov/pubmed/16669657

doi: 10.1021/ja061301x pmid: 16669657
[56]
Xu Y, Li Z, Malkovskiy A, Sun S, Pang Y J . Phys. Chem. B, 2010,114:8574. https://www.ncbi.nlm.nih.gov/pubmed/20524700

doi: 10.1021/jp1029536 pmid: 20524700
[57]
Xu Y, Malkovskiy A, Pang Y . Chem. Commun., 2011,47:6662. https://www.ncbi.nlm.nih.gov/pubmed/21559544

doi: 10.1039/c1cc11355k pmid: 21559544
[58]
Chen X, Zhou Y, Peng X, Yoon J . Chem. Soc. Rev., 2010. 39:2120 https://www.ncbi.nlm.nih.gov/pubmed/20502801

doi: 10.1039/b925092a pmid: 20502801
[59]
Zhou Y, Yoon J . Chem. Soc. Rev., 2012,41:52-67. https://www.ncbi.nlm.nih.gov/pubmed/21799954

doi: 10.1039/c1cs15159b pmid: 21799954
[60]
Jung H S, Chen X, Kim J S, Yoon J . Chem. Soc. Rev., 2013,42:6019. https://www.ncbi.nlm.nih.gov/pubmed/23689799

doi: 10.1039/c3cs60024f pmid: 23689799
[61]
Yin C X, Huo F J, Zhang J J, Máñez R M, Yang Y T, Lv H G, Li S D . Chem. Soc. Rev., 2013,42:6032. https://www.ncbi.nlm.nih.gov/pubmed/23703585

doi: 10.1039/c3cs60055f pmid: 23703585
[62]
Lee M H, Yang Z, Lim C W, Lee Y H, Sun D, Kang C, Kim J S . Chem. Rev., 2013,113:5071. https://www.ncbi.nlm.nih.gov/pubmed/23577659

doi: 10.1021/cr300358b pmid: 23577659
[63]
Ashton T D, Jolliffe K A, Pfeffer F M . Chem. Soc. Rev., 2015,44:4547. https://www.ncbi.nlm.nih.gov/pubmed/25673509

doi: 10.1039/c4cs00372a pmid: 25673509
[64]
Anees P, Sreejith S, Ajayaghosh A . J. Am. Chem. Soc., 2014,136:13233. https://www.ncbi.nlm.nih.gov/pubmed/25199066

doi: 10.1021/ja503850b pmid: 25199066
[65]
Xu Y, Li B, Xiao L, Ouyang J, Sun S, Pang Y . Chem. Commun., 2014,50:8677. https://www.ncbi.nlm.nih.gov/pubmed/24957006

doi: 10.1039/c3cc49254k pmid: 24957006
[66]
Zhang Q, Zhang P, Li S S, Fu C X, Ding C F , Dye. Pigm., 2019,171:107697.
[67]
Xu Y, Malkovskiy A, Wang Q, Pang Y . Org. Biomol. Chem., 2011,9:2878. https://www.ncbi.nlm.nih.gov/pubmed/21373660

doi: 10.1039/c0ob01061h pmid: 21373660
[68]
Li J, Lv B Z, Yan D P, Yan S K, Wei M, Yin M Z . Adv. Funct. Mater., 2015,25:7442.
[69]
Shi Y H, Sun H X, Xiang J F, Chen H B, Zhang S G, Guan A J, Li Q, Xu S J, Tang Y L . Chem. Commun., 2016,52:7302. https://www.ncbi.nlm.nih.gov/pubmed/27181338

doi: 10.1039/c6cc02930b pmid: 27181338
[70]
Zhang P, Guo X J, Xiao Y Z, Zhang Q, Ding C F . Spectrochim. Acta A, 2019,223:117318. https://www.ncbi.nlm.nih.gov/pubmed/31272040

doi: 10.1016/j.saa.2019.117318 pmid: 31272040
[71]
Zhang P, Gong Y, Zhang Q, Guo X J, Ding C F . J. Mater. Chem. B, 2019,7:5182 https://www.ncbi.nlm.nih.gov/pubmed/31460558

doi: 10.1039/c9tb00769e pmid: 31460558
[72]
侯瑞(Hou R), 李桂群(Li G Q), 张岩(Zhang Y), 李明俊(Li M J), 周桂明(Zhou G M), 柴晓明(Chai X M) . 化学进展 (Progress in Chemistry), 2019,5:690.
[73]
Zhang P, Li S S, Fu C X, Zhang Q, Xiao Y Z Ding C F . Analyst, 2019,144:5472. https://www.ncbi.nlm.nih.gov/pubmed/31384852

doi: 10.1039/c9an01045a pmid: 31384852
No related articles found!