中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1706-1720 DOI: 10.7536/PC200813 Previous Articles   Next Articles

• Review •

Supported BINAP-M Catalysts

Wenqing Yang1, Dale Xie1, Jun Cheng1, Weike Tang1, Ruobing Wang2, Yisi Feng1()   

  1. 1 Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
    2 Department of Primary Education of Tongcheng Normal College,Tongcheng 231400, China
  • Received: Revised: Online: Published:
  • Contact: Yisi Feng
  • Supported by:
    National Natural Science Foundation of China(21971050); Key Projects of Natural Science Research Projects in Colleges and Universities of Anhui Province(KJ2019A1248)
Richhtml ( 35 ) PDF ( 333 ) Cited
Export

EndNote

Ris

BibTeX

As one of the most important and well-known chiral catalysts, 1,1'-binapthyl-2,2'-bisdiphenylphosphine metal complexes(BINAP-M) have been widely concerned in industry and basic theoretical research in the past few decades. Although BINAP-M as a homogeneous chiral catalyst has the characteristics of high activity and good selectivity, it also has the limitations of high price, high application cost and difficult to recycle, especially the catalyst residues in synthesis products such as pharmaceutical products, which limits its large-scale application in industry. Therefore, it has become an important research topic to search for BINAP-M catalysts which can not only keep high catalytic activity, but also be easy to recover and recycle. In this paper, the research progress of recyclable BINAP-M catalysts in recent years is summarized. The research results of adsorption-supported and covalently-supported BINAP-M catalysts in the field of recyclability are mainly introduced. The advantages and disadvantages of different types of recyclable BINAP-M catalysts are analyzed and discussed. On this basis, a covalently-supported BINAP-M catalyst with “flexible bridge chain” structure is also introduced, and its application prospect in “quasi-homogeneous” catalytic reaction is analyzed, which provides a new research idea for the design and preparation of supported catalyst.

Contents

1 Introduction

2 BINAP directly supported catalyst

2.1 Oxide supporter loading

2.2 Magnetite nanoparticle supporter loading

2.3 Other supporter loading

3 Covalently loaded BINAP-M catalyst

3.1 Mesoporous silica covalent loading

3.2 Polymer supporter loading

3.2.1 Conventional polymer supporter

3.2.2 Dendrimer supporter

3.2.3 Porous polymer supporter

3.3 Other supporter loading

4 Conclusion and outlook

Scheme 1 BINAP
Scheme 2 [Cu(binap)I]2@Hydrotalcite supported catalyst(2)[21]
Scheme 3 Styrene hydroboration/oxidation catalyzed by MK-10T-BINAP-Rh[22]
Scheme 4 Selective catalytic hydrogenation of HMS-Ru-BINAP[23]
Scheme 5 Assembly diagram of Ru-(R-Binap)@C-FDU-12(4)[25]
Scheme 6 Schematic diagram of magnetic nanoparticles BINAP-Ru supported catalysts (Fe3O4-Ru-Cl-DPEN-BINAP)(5 or 6)[27,28]
Scheme 7 Assembly diagram of BINAP-FePd magnetic nanoparticles catalysts(FePd-(S)-BINAP) or(FePd-(R)-BINAP)[29]
Scheme 8 Ordered mesoporous silica BINAP-Ru catalysts(SBA15-Ru(BINAP-L1)(DMF)2Cl2)(8a) or (SBA15-Ru(BINAP-L2)(DMF)2Cl2)(8b)[34]
Scheme 9 Mesoporous silica nanospheres supported BINAP-Ru catalysts(MSNs-BINAP-Ru)(9,10)[35]
Scheme 10 Mesoporous silica supported catalysts(Ru-SB-EN-MCM-41/48)(11) and(Ru-SB-SDPEN-MCM-41/48)(12)[36]
Scheme 11 β-ketoesters and amide substrates and covalently supported silica catalysts(13)[37]
Scheme 12 Ordered mesoporous silica BINAP-Ru catalyst(Ru-PMO-BINAP)(14)[38]
Scheme 13 Structure diagrams of three kinds of polystyrene resins catalysts (PS-BINAP-Ru)(R,RR)-15a,(R,RR)-15b,(R,SS)-16a[42]
Scheme 14 Structure diagram of polystyrene resins catalysts (Cu-PS-(S)-BINAP)(17)[43]
Scheme 15 PS-BINAP-M-2 polymerization method.(A) Crosslinking polymerization;(B) copolymerization reaction[44]
Scheme 16 Polycondensation of(S)-poly-NAP and(S)-poly-NAP-Ru catalysts (19)[45]
Scheme 17 Polyurea catalyst(20)[46]
Scheme 18 “FrÉchet” Ru-BINAP catalyst of dendrimer(21,22)[49]
Scheme 19 Dendrimer polymer BINAP-Ru catalyst (Ru-poly(BINAP)s)(23)[51]
Scheme 20 Dendrimer polymer ((S)-GnDenBINAP-Ir(n=1~4))(24)[52]
Scheme 21 Chiral conjugated copolymer P-2 and Ru/Ir bimetal dendrimer catalyst 25a~c[53]
Scheme 22 Polyethyleneimine BINAP-Cu catalysts (Carbo-BINAP-Cu)(26)and (Glutaroyl-AMINAP-Cu)(27)[54]
Scheme 23 Porous chiral polymer BINAP-Ru catalyst(PCP-BINAP-Ru)(28)[55]
Scheme 24 The synthesis of porous polymer type BINAP-Ru catalyst (29)[56]
Scheme 25 Porous organic polymer Catalysts (Ru-BINAP-POPs-1)(30),(Ru-BINAP-POPs-2)(31),(Ru-BINAP-POPs-3)(32),(Ru-BINAP-POPs-4)(33)(Ru-BINAP-POPs-5)(34)[57,58]
Scheme 26 Porous zirconium phosphate supported BINAP-Ru catalyst(Zr-Ru-BINAP-DMF)(35)[59]
Scheme 27 Porous zirconium phosphate supported BINAP catalyst(Zr-Ru-BINAP-DPEN)(36)[60]
Scheme 28 Chiral BINAP-MOF catalyst(Rh-BINAP-MOF-1)(37)and (BINAP-MOF-2)(38)[61]
Scheme 29 Graphene covalently supported BINAP catalysts (Ru-DPEN-C-BINAP)(GO-C,39)and (Ru-DPEN-I-BINAP)(GO-I,40)[62]
[1]
Bolm C, Beller M. Transition Metals for Organic Synthesis. Weinheim: Wiley-VCH, 2004.
[2]
Zhu S F, Zhou Q L. Privileged Chiral Ligands and Catalysts. Weinheim: Wiley-VCH Verlag GmbH & Co.KGaA, 2011. 137.
[3]
Carroll M P, Guiry P J. Chem. Soc. Rev., 2014, 43(3): 819.

doi: 10.1039/C3CS60302D
[4]
(a) Noyori R, Takaya H. Acc. Chem. Res., 1990, 23: 345;

doi: 10.1021/ar00178a005
(b) Yamamoto T. Current Topics in Flavours and Fragrances. Dordrecht: Springer, 1999. 33;
(c) Magano J, Dunetz J R. Chem. Rev., 2011, 111: 2177.
[5]
(a) Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R. J. Am. Chem. Soc., 1980, 102: 7932;

doi: 10.1021/ja00547a020
(b) Zhang Y L, Zhang R, Chang H H, Wei W L, Li X. Prog. Chem., 2014, 26: 1492.
( 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 化学进展 2014, 26: 1492.).

doi: 10.7536/PC140319
[6]
(a) Noyori R, Ohkuma T. Angew. Chem., Int. Ed., 2001, 40: 40;
(b) Noyori R. Angew. Chem. Int. Ed., 2002, 41: 2008;

doi: 10.1002/1521-3773(20020617)41:12【-逻*辑*与-】#x00026;lt;2008::AID-ANIE2008【-逻*辑*与-】#x00026;gt;3.0.CO;2-4
(c) Yamakawa M, Yamada I, Noyori R. Angew. Chem. Int. Ed., 2001, 40: 2818;

doi: 10.1002/(ISSN)1521-3773
(d) Giustra Z X, Ishibashi J S A, Liu S Y. Coordin. Chem. Rev., 2016, 314: 134;

doi: 10.1016/j.ccr.2015.11.006
(e) Chaloner P A, Esteruelas M A, Oro L A. Homogeneous Hydrogenation. Dordrecht: Springer, 1994. 119.
[7]
Mc Cartney D, Guiry P J. Chem. Soc. Rev., 2011, 40(10): 5122.

doi: 10.1039/c1cs15101k pmid: 21677934
[8]
Patil N T, Kavthe R D, Shinde V S. Tetrahedron, 2012, 68(39): 8079.
[9]
Yoshimura T, Maeda S, Taketsugu T, Sawamura M, Morokuma K, Mori S. Chem. Sci., 2017, 8(6): 4475.

doi: 10.1039/C7SC00401J
[10]
Tamura M, Fujihara H. J. Am. Chem. Soc., 2003, 125(51): 15742.

doi: 10.1021/ja0369055
[11]
Sawai K, Tatumi R, Nakahodo T, Fujihara H. Angew. Chem. Int. Ed., 2008, 47(36): 6917.

doi: 10.1002/anie.v47:36
[12]
Vural Gürsel I, Noël T, Wang Q, Hessel V. Green Chem., 2015, 17(4): 2012.

doi: 10.1039/C4GC02160F
[13]
Li J, Gao S, Xi Z. Chin. J. Catal., 2010, 31: 895.
[14]
(a) Jin X, Kong F F, Yang Z Q, Cui F F. J. Mol. Catal. A: Chem., 2013, 374: 22;
(b) Nair D, Wong H T, Han S, Vankelecom I F J, White L S, Livingston A C, Boam A T. Org. Process Res. Dev., 2009, 13: 863.

doi: 10.1021/op900056s
[15]
Hope E G, Stuart A M, West A J. Green Chem., 2004, 6(7): 345.

doi: 10.1039/b404824e
[16]
(a) Horn J, Bannwarth W. Eur. J. Org. Chem., 2007, 13: 2058;
(b) Berthod M, Mignani G, Lemaire M. Tetrahedron: Asymmetry, 2004, 15: 1121.
[17]
Zamboulis A, Moitra N, Moreau J J E, Cattoën X, Wong Chi Man M. J. Mater. Chem., 2010, 20(42): 9322.

doi: 10.1039/c000334d
[18]
Heitbaum M, Glorius F, Escher I. Angew. Chem. Int. Ed., 2006, 45(29): 4732.

doi: 10.1002/(ISSN)1521-3773
[19]
Shimazu S, Ro K, Sento T, Ichikuni N, Uematsu T. J. Mol. Catal. A: Chem., 1996, 107(1/3): 297.

doi: 10.1016/1381-1169(95)00271-5
[20]
Xu Z J, Yu X L, Sang X X, Wang D W. Green Chem., 2018, 20(11): 2571.
[21]
Zhang Q H, Wang H B, Hu W K, Xu X Q, Xu Z J, Chen C, Wang D W. J. Chem. Technol. Biotechnol., 2020, 95(7): 2027.
[22]
Segarra A M, Guerrero R, Claver C, Fernández E. Chem. Eur. J., 2003, 9(1): 191.

doi: 10.1002/chem.200390012
[23]
Jamis J, Anderson J R, Dickson R S, Campi E M, Jackson W R. J. Organomet. Chem., 2000, 603(1): 80.

doi: 10.1016/S0022-328X(00)00127-3
[24]
Fan J, Yu C Z, Gao F, Lei J, Tian B Z, Wang L M, Luo Q, Tu B, Zhou W Z, Zhao D Y. Angew. Chem. Int. Ed., 2003, 42(27): 3146.

doi: 10.1002/anie.200351027
[25]
Peng J, Wang X F, Zhang X M, Bai S Y, Zhao Y P, Li C, Yang Q H. Catal. Sci. Technol., 2015, 5(2): 666.

doi: 10.1039/C4CY00228H
[26]
Gawande M B, Branco P S, Varma R S. Chem. Soc. Rev., 2013, 42(8): 3371.

doi: 10.1039/c3cs35480f pmid: 23420127
[27]
Hu A G, Yee G T, Lin W B. J. Am. Chem. Soc., 2005, 127(36): 12486.
[28]
Hu A G, Liu S, Lin W B. RSC Adv., 2012, 2(6): 2576.

doi: 10.1039/c2ra01073a
[29]
Mori K, Kondo Y, Yamashita H. Phys. Chem. Chem. Phys., 2009, 11(39): 8949.

doi: 10.1039/b910069e
[30]
Tamura M, Fujihara H. J. Am. Chem. Soc., 2003, 125(51): 15742.

doi: 10.1021/ja0369055
[31]
Song C E. Annu. Rep. Prog. Chem., Sect. C, 2005, 101: 143.
[32]
McMorn P, Hutchings G J. Chem. Soc. Rev., 2004, 33(2): 108.

pmid: 14767506
[33]
Cheng T Y, Zhao Q K, Zhang D C, Liu G H. Green Chem., 2015, 17(4): 2100.

doi: 10.1039/C4GC02204A
[34]
Kesanli B, Lin W B. Chem. Commun., 2004(20): 2284.
[35]
Mihalcik D, Lin W B. ChemCatChem, 2009, 1(3): 406.

doi: 10.1002/cctc.v1:3
[36]
Ghosh A, Kumar R. J. Catal., 2004, 228(2): 386.
[37]
McDonald A R, Müller C, Vogt D, van Klink G P M, van Koten G. Green Chem., 2008, 10(4): 424.

doi: 10.1039/b714189k
[38]
Seki T, McEleney K, Crudden C M. Chem. Commun., 2012, 48(51): 6369.

doi: 10.1039/c2cc31247f
[39]
Fan Q H, Wang R, Chan A S C. Bioorg. Med. Chem. Lett., 2002, 12(14): 1867.
[40]
Fan Q H, Ren C Y, Yeung C H, Hu W H, Chan A S C. J. Am. Chem. Soc., 1999, 121(32): 7407.

doi: 10.1021/ja9837497
[41]
Fan Q H, Li Y M, Chan A S C. Chem. Rev., 2002, 102(10): 3385.
[42]
Ohkuma T, Takeno H, Honda Y, Noyori R. Adv. Synth. Catal., 2001, 343(4): 369.

doi: 10.1002/(ISSN)1615-4169
[43]
Liu X, Zhou W Q, Xu L Q. Chirality, 2017, 29(9): 541.

doi: 10.1002/chir.v29.9
[44]
Takahashi M, Haraguchi N, Itsuno S. Tetrahedron: Asymmetry, 2008, 19(1): 60.
[45]
ter Halle R, Colasson B, Schulz E, Spagnol M, Lemaire M. Tetrahedron Lett., 2000, 41(5): 643.
[46]
Saluzzo C, Lamouille T, Le Guyader F, Lemaire M. Tetrahedron: Asymmetry, 2002, 13(11): 1141.
[47]
Brunner H, Fürst J. Tetrahedron, 1994, 50(15): 4303.

doi: 10.1016/S0040-4020(01)89367-4
[48]
Brunner H, Janura M, Stefaniak S. Synthesis, 1998, 1998(12): 1742.

doi: 10.1055/s-1998-2226
[49]
Deng G J, Fan Q H, Chen X M, Liu D S, Chan A S C. Chem. Commun., 2002, (15): 1570.
[50]
Hawker C J, Frechet J M J. J. Am. Chem. Soc., 1990, 112(21): 7638.

doi: 10.1021/ja00177a027
[51]
Deng G J, Yi B, Huang Y Y, Tang W J, He Y M, Fan Q H. Adv. Synth. Catal., 2004, 346(12): 1440.
[52]
Wang Z J, Deng G J, Li Y, He Y M, Tang W J, Fan Q H. Org. Lett., 2007, 9(7): 1243.

doi: 10.1021/ol0631410
[53]
Huang Y Y, Yang X, Feng Y, Verpoort F, Fan Q H. J. Mol. Catal. A: Chem., 2014, 393: 150.

doi: 10.1016/j.molcata.2014.06.013
[54]
Kassube J, Wadepohl H, Gade L. Adv. Synth. Catal., 2009, 351(4): 607.

doi: 10.1002/adsc.v351:4
[55]
Sun Q, Meng X J, Liu X, Zhang X M, Yang Y, Yang Q H, Xiao F S. Chem. Commun., 2012, 48(85): 10505.

doi: 10.1039/c2cc35192g
[56]
Wang T, Lyu Y, Chen X K, Li C Y, Jiang M, Song X G, Ding Y J. RSC Adv., 2016, 6(34): 28447.

doi: 10.1039/C5RA23597A
[57]
Wang T, Wang W L, Lyu Y, Xiong K, Li C Y, Zhang H, Zhan Z P, Jiang Z, Ding Y J. Chin. J. Catal., 2017, 38(4): 691.

doi: 10.1016/S1872-2067(17)62790-6
[58]
Wang T, Lyu Y, Xiong K, Wang W L, Zhang H, Zhan Z P, Jiang Z, Ding Y J. Chin. J. Catal., 2017, 38(5): 890.

doi: 10.1016/S1872-2067(17)62826-2
[59]
Hu A G, Ngo H L, Lin W B. Angew. Chem. Int. Ed., 2003, 42(48): 6000.

doi: 10.1002/(ISSN)1521-3773
[60]
Hu A G, Ngo H L, Lin W B. J. Am. Chem. Soc., 2003, 125(38): 11490.

doi: 10.1021/ja0348344
[61]
Falkowski J M, Sawano T, Zhang T, Tsun G, Chen Y, Lockard J V, Lin W B. J. Am. Chem. Soc., 2014, 136(14): 5213.

doi: 10.1021/ja500090y pmid: 24684238
[62]
Dongil A B, Bachiller-Baeza B, Guerrero-Ruiz A, Rodríguez-Ramos I. Catal. Commun., 2012, 26: 149.

doi: 10.1016/j.catcom.2012.05.015
[63]
(a) Heitbaum M, Glorius F, Escher I. Angew. Chem. Int. Ed., 2006, 45: 4732;
(b) Choplin A, Quignard F. Coordin. Chem. Rev., 1998, 178: 1679.
No related articles found!
Viewed
Full text


Abstract

Supported BINAP-M Catalysts