English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1847-1859 DOI: 10.7536/PC160402 前一篇   后一篇

• 综述与评论 •

催化氧化技术在可挥发性有机物处理的研究

赵倩1,2, 葛云丽1,2, 纪娜1,2, 宋春风1,2, 马德刚1,2, 刘庆岭1,2*   

  1. 1. 天津大学环境科学与工程学院 室内空气环境质量控制天津市重点实验室 天津 300072;
    2. 天津大学内燃机燃烧学国家重点实验室 天津 300072
  • 收稿日期:2016-04-01 修回日期:2016-10-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 刘庆岭,e-mail:liuql@tju.edu.cn E-mail:liuql@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21406165,51506147,21503144),国家重点基础研究发展计划(No.2012CB214900)和天津市应用基础与前沿技术研究计划(No.15JCQNJC08500,16JCQNJC05400)资助

Removal of Volatile Organic Compounds by Catalytic Oxidation Technology

Zhao Qian1,2, Ge Yunli1,2, Ji Na1,2, Song Chunfeng1,2, Ma Degang1,2, Liu Qingling1,2*   

  1. 1. Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300072;
    2. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
  • Received:2016-04-01 Revised:2016-10-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the Natural National Science Foundation of China (No. 21406165, 51506147, 21503144), the National Key Basic Research Program of China (No. 2012CB214900) and the Tianjin Research Program of Application Foundation and Advanced Technique (No. 15JCQNJC08500, 16JCQNJC05400).
挥发性有机物(VOCs)是一类具有毒性且对环境和人体健康产生威胁的有机化合物。目前催化氧化技术是有效净化VOCs的方法之一,它可以将VOCs转化为CO2和H2O。本文在总结国内外VOCs净化技术的基础上,着重介绍了催化氧化技术,并且对常用的催化剂种类、催化机理及存在的问题进行了总结。最后对催化氧化技术的发展趋势进行了展望。研究结果表明,贵金属催化剂的研究关键在于有效载体的选择及催化剂抗中毒性能的提高;与贵金属催化剂相比,钙钛矿和尖晶石等非贵金属催化剂的发展趋势为通过改变催化剂配方、催化剂形貌结构、活性组分粒径大小及比表面积等来提高催化剂的低温可还原性、储氧能力和氧缺陷,进而提高其催化性能。本文的评述将为选择合适的催化剂处理VOCs提供一定的参考基础。
Volatile organic compounds (VOCs) are poisonous organic compounds which pose a threat to environment and human health. Catalytic oxidation technology, which can convert VOCs into CO2 and H2O, is considered as one of promising techniques for VOCs removal. On the basis of the summary of VOCs removal technologies at home and abroad, catalytic oxidation method is emphatically introduced; besides, catalysts in common use, catalytic oxidation mechanism and existent problems are summarized in this paper. Finally, developmental trends of catalytic oxidation technology of VOCs are also presented. The results show that the core of noble catalysts is the optimization of effective supporters and the enhancement of resistance to catalyst poisoning. As for perovskite-type, spinel-type and other non-noble metal catalyst, it is the key to decrease the active temperature of catalysts. And it can be considered that the reduction ability, oxygen storage capacity and oxygen vacancy, which are critical factors determining catalyst performance for VOCs oxidation, can be improved by means of adjusting the compounding formula, morphological structure, particle size and specific surface area of catalysts and proceed to enhance catalyst performance. This review will offer certain value for reference to determine the proper catalyst for VOCs removal.

Contents
1 Introduction
2 Mechanism of catalytic oxidation
3 Catalysts of VOCs oxidation
3.1 Noble metal catalysts
3.2 Non-noble metal catalysts
4 Future trends
4.1 Noble metal catalysts
4.2 Non-noble metal catalysts
5 Conclusion

中图分类号: 

()
[1] Hutchings G J, Heneghan C S, Hudson I D, Taylor S H. Nature, 1996, 384:341.
[2] Le Cloirec P. Rev. Environ. Sci. Bio., 2012, 11(4):381.
[3] Atkinson R, Arey J. Chem. Rev., 2003, 103(12):4605.
[4] Yu C, Crump D. Build. Environ., 1998, 33(6):357.
[5] Tchobanoglous G, Theisen H, Vigil S. Integrated Solid Waste Management:Engineering Principles and Management Issues. NY:McGraw-Hill, Inc., 1993. 80
[6] 杨新兴(Yang X X), 李世莲(Li S L), 尉鹏(Wei P), 冯丽华(Feng L H).前沿科学(Frontier Science), 2013, 7(4):21.
[7] 王连生(Wang L S). 高等教育出版社(Higher Education Press), 2004, 122.
[8] Mølhave L, Bach B, Pedersen O F. Environ. Int., 1986, 12:167.
[9] World Health Organization (WHO). Air quality guidelines for Europe, 2nd edition. European Series, No.91. WHO Regional Publications, 2000.
[10] 张薇薇(Zhang W W). 大连理工大学硕士论文(Master's Dissertation of Dalian University of Technology), 2011.
[11] 孟中华(Meng Z H). 浙江大学硕士论文(Master's Dissertation of Zhejiang University), 2013.
[12] Roizard D, Lapicque F, Favre E, Roizard C. Chem. Eng. Sci., 2009, 64(9):1927.
[13] Yu C, Crump D. Build. Environ., 1998, 33(6):357.
[14] Müller G, Ulrich M. Chem. Ing. Tech., 1991, 63(8):819.
[15] Trimm D L. Appl. Catal., 1983, 7(3):249.
[16] Tsuru T, Kanno T, Yoshioka T, Asaeda M. J. Membrane Sci., 2006, 280(1):156.
[17] Rusu A O, Dumitriu E. Environ. Eng. Manag. J., 2003, 2(4):273.
[18] Spivey J J. Ind. Eng. Chem. Res., 1987, 26(11):2165.
[19] Scirè S, Liotta L F. Appl. Catal. B:Environ., 2012, 125:222.
[20] Everaert K, Baeyens J. J. Hazard. Mater., 2004, 109(1):113.
[21] Mukadi L S, Hayes R E. Comput. Chem. Eng., 2002, 26(3):439
[22] Stoyanova M, Konova P, Nikolov P, Naydenov A, Mehandjiev D. Chem. Eng. J., 2006, 122(1):41.
[23] Alvarez-Merino M A, Ribeiro M F, Silva J M,Carrasco-Marin F, Maldonado-Hodar F J. Environ. Sci. Technol., 2004, 38(17):4664.
[24] Balasubramanian S, Viswanath D S. Ind. Eng. Chem. Res., 1975, 14(3):158.
[25] Grasselli R K. Top. Catal., 2002, 21(1/3):79.
[26] Tang W X, Wu X F, Li D Y, Wang Z, Liu G, Liu H D, Chen Y F. J. Mater. Chem. A, 2014, 2:2544.
[27] Akram S, Wang Z, Chen L, Wang Q, Shen G L, Han N, Chen Y F, Ge G L. Catal. Communi., 2016, 73:123.
[28] Liotta L F. Appl. Catal. B:Environ., 2010, 100(3):403.
[29] Tidahy H L, Hosseni M, Siffert S, Cousin R, Lamonier J F, Aboukaïs A, Su B L, Giraudon J M, Leclercq G. Catal. Today, 2008, 137(2):335.
[30] Lewandowski M, Ollis D F. J. Catal., 2003, 217:38.
[31] Ousmane M, Liotta L F, Di Carlo G, Pantaleo G, Venezia A M, Deganello G, Retailleau L, Boreave A, Giroir-Fendler A. Appl. Catal. B:Environ., 2011, 101(3):629.
[32] Lamallem M, El Ayadi H, Gennequin C, Cousin R, Siffert S, Aïssi F, Aboukaïs A. Catal. Today, 2008, 137(2):367.
[33] Gluhoi A C, Bogdanchikova N, Nieuwenhuys B E. J.Catal., 2005, 229(1):154.
[34] Tan W, Guo G, Deng J, Xie S, Yang H, Jiang Y, Dai H. Ind. Eng. Chem. Res., 2014, 53(48):18452.
[35] Han W, Deng J, Xie S, Yang H, Dai H, Au C T. Ind. Eng. Chem. Res., 2014, 53(9):3486.
[36] Cellier C, Lambert S, Gaigneaux E M, Poleunis C, Ruaux V, Eloy P, Lahousse C, Bertrand P, Pirard J P, Grange P. Appl. Catal. B:Environ., 2007, 70(1):406.
[37] Carabineiro S A C, Chen X, Martynyuk O, Bogdanchikova N, Avalos-Borja M, Pestryakov A, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L. Catal. Today, 2015, 244:103.
[38] Huang S, Zhang C, He H. Catal. Today, 2008, 139(1):15.
[39] He C, Li J, Zhang X, Yin L, Chen J, Gao S. Chem. Eng. J., 2012, 180:46.
[40] Wang Y, Zhang C, Liu F, He H. Appl. Catal. B:Environ., 2013, 142:72.
[41] Wu Z X, Deng J G, Xie S H, Yang H G, Zhao X T, Zhang K F, Lin H X, Dai H X, Guo G S. Micropor. Mesopor. Mat., 2016, 224:311.
[42] Paulis M, Peyrard H, Montes M. J. Catal., 2001, 199(1):30.
[43] Tang W, Wu X, Chen Y. React. Kinet. Mech. Cat., 2015, 114(2):711.
[44] Li Z H, Yang K, Liu G, Deng G F, Li J Q, Li G, Yue R L, Yang J, Chen Y F. Catal. Let., 2014, 144(6):1080.
[45] Deng J, He S, Xie S, Yang H, Liu Y, Guo G, Dai H. Environ. Sci. Technol., 2015, 49(18):11089.
[46] Giraudon J M, Elhachimi A, Wyrwalski F, Siffert S, Aboukais A, Lamonier J F, Leclercq G. Appl. Catal. B:Environ., 2007, 75(3):157.
[47] Papaefthimiou P, Ioannides T, Verykios X E. Appl. Catal. B, 1997, 13:175.
[48] Fiorenza R, Crisafulli C, Condorelli G G, Lupo F, Scirè S. Catal. Lett., 2015, 145(9):1691.
[49] Baek S W, Kim J R, Ihm S K. Catal. Today, 2004, 93:575.
[50] Tidahy H L, Siffert S, Lamonier J F, Zhilinskaya E A, Aboukaïs A, Yuan Z Y, Vantomme A, Su B L, Canet X, Deweireld G, Frère M N, Guyen T B, Giraudon J M, Leclercq G.Appl. Catal. A:Gen., 2006, 310:61.
[51] Tidahy H L, Siffert S, Lamonier J F, Zhilinskaya E A, Aboukais A, Yuan Z Y, Vantomme A, Su B L, Canet X, Deweireld G, Frere M. Stud. Surf. Sci. Catal., 2007, 160:201.
[52] Pozan G S. J.Hazard. Mater., 2012, 221:124.
[53] Tang W X, Deng Y Z, Li W H, Li J Q, Li G, Li A D, Wu X F, Chen Y F. Catal. Sci. Technol., 2016, 6(6):1710.
[54] Njagi E C, Genuino H C, King'ondu C K, Dharmarathna S, Suib S L. Appl. Catal. A:Gen., 2012, 421:154.
[55] Dai Q, Wang X, Lu G. Appl. Catal. B:Environ., 2008, 81(3):192.
[56] Pérez A, Molina R, Moreno S. Appl. Catal. A:Gen., 2014, 477:109.
[57] de Rivas B, López-Fonseca R, Jiménez-González C, Gutiérrez-Ortiz J I. J. Catal., 2011, 281(1):88.
[58] Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y. Environ. Sci. Technol., 2012, 46(7):4034.
[59] Cao S, Wang H Q, Yu F X, Shi M P, Chen S, Weng X L, Liu Y, Wu Z B. J. Colloid Interf. Sci., 2016, 43:233.
[60] Wei Y C, Liu J, Zhao Z, Duan A J, Jiang G Y, Xu C M, Gao J S, He H, Wang X P. Energy Environ. Sci., 2011, 4(8):2959.
[61] He C, Yu Y K, Chen C W, Yue L, Qiao N L, Shen Q, Chen J S, Hao Z P. RSC Adv., 2013, 3(42):19639.
[62] Du Y C, Meng Q, Wang J S, Yan J, Fan H G, Liu Y X, Dai H X. Micropor. Mesopor. Mat., 2012, 162:199.
[63] Tang W X, Wu X F, Li S D, Shan X, Liu G, Chen Y F. Appl. Catal. B:Environ., 2015, 162:110.
[64] Zhang H M, Shimizu Y, Teraoka Y, Miura N, Yamazoe N. J. Catal., 1990, 121(2):432.
[65] Rezlescu N, Rezlescu E, Popa P D, Doroftei C, Ignat M. Mater. Chem. Phys., 2016, 182:332.
[66] Luo Y, Wang K, Chen Q, Xu Y, Xue H, Qian Q. J. Hazar. Mater., 2015, 296:17.
[67] Zhang J Y, Tan D D, Meng Q J, Wen X L, Wu Z B. Appl. Catal. B:Environ., 2015, 172:18.
[68] 王永强(Wang Y Q), 肖丽(Xiao L), 孙启猛(Sun Q M), 赵朝成(Zhao C C), 李石(Li S). 燃烧化学学报(Journal of Fuel Chemistry and Technology). 2014, 9(42):1146.
[69] Hosseini S A, Salari D, Niaei A, Oskoui S. J. Ind. Eng. Chem., 2013, 19:1903.
[70] Rezlescu N, Rezlescu E, Popa P D, Doroftei C, Ignat M. Ceram. Internat., 2015, 41(3):4430.
[71] Liu Y X, Dai H X, Du Y C, Deng J, Zhang L, Zhao Z, Au C T. J. Catal., 2012, 287:149.
[72] Ji K M, Dai H X, Dai J X, Deng J G, Wang F, Zhang H, Zhang L. Catal. Today, 2013, 201:40.
[73] Ji K M, Dai H X, Deng J G, Jiang H Y, Zhang L, Zhang H, Cao Y J. Chem. Eng. J., 2013, 214:262.
[74] Gao B Z, Deng J G, Liu Y X, Zhao Z X, Li X W, Wang Y, Dai H X. Chinese J. Catal., 2013, 34(12):2223.
[75] Chen Y W, Li B, Niu Q, Li L, Kan J W, Zhu S M, Shen S B. Environ. Sci. Pollut. Res., 2016, 23:15193.
[76] Jiang Y, Deng J G, Xie S H, Yang H G, Dai H X. Ind.Eng.Chem.Res., 2015, 54(3):900.
[77] Li X W, Dai H X, Deng J G, Liu Y X, Xie S H, Zhao Z X, Wang Y, Guo G S, Hamidreza Arandiyan. Chem.Eng. J., 2013, 228(14):965.
[78] Yong S T, Hidajat K, Kawi S. Catal. Today, 2008, 131(1):188.
[79] Hosseini S A, Niaei A, Salari D, Nabavi S R. Ceram Int., 2012, 38(2):1655.
[80] Hosseini S A, Salari D, Niaei A, Deganello F, Pantaleo G, Hojati P. J. Environ. Sci. Heal. A, 2011, 46(3):291.
[81] Li D L, Fan Y Y, Ding Y Y, Wei X F, Xiao Y H. Catal. Commun., 2017, 88(5):60.
[82] Alphonse P. Appl. Catal. B:Environ., 2016, 180:715.
[83] Zav'yalova U, Nigrovski B, Pollok K, Langenhorst F, Müller B, Scholz P, Ondruschka B. Appl. Catal. B:Environ., 2008, 83(3):221.
[84] Castillo S, Moran-Pineda M, Gómez R, López T. J. Catal., 1997, 172(1):263.
[85] Vodyankin A Y, Kurina L N, Popov V N. Kinetika i kataliz, 1999, 40(4):636.
[86] Hosseini S A, Niaei A, Salari D, Nabavi S R. Ceram. Int., 2012, 38(2):1655.
[87] Tang Q H, Wu C M, Qiao R, Chen Y T, Yang Y H. Appl. Catal. A:Gen., 2011, 403(1):136.
[88] Jodaei A, Salari D, Niaei A, Khatamian M, Ali Hosseini S. J. Environ. Sci. Heal. A, 2011, 46(1):50.
[89] Chen M, Zheng X M. J. Mol. Catal. A:Chem., 2004, 221(1):77.
[90] Garetto T F, Vignatti C I, Borgna A, Monzón A. Appl. Catal. B:Environ., 2009, 87(3):211.
[91] Ran L, Qin Z, Wang Z, Wang X, Dai Q. Catal. Commun., 2013, 37:5.
[92] Zhao S, Li K Z, Jiang S, Li J H. Appl. Catal. B:Environ., 2016, 181:236.
[93] Zawadaki M, Okal J. Catal. Today, 2015, 257:136.
[94] Tian Z Y, Ngamou P H T, Vannier V, Kohse-Höinghaus K, Bahlawane N. Appl. Catal. B:Environ., 2012, 117(3):125.
[95] 余凤江(Yu F J), 张丽丹(Zhang L D). 北京化工大学学报:自然科学版(Journal of Beijing University of Chemical Technology), 2001, 28(4):67.
[96] Groppi G, Cristiani C, Forzatti P. Appl. Catal. B:Environ., 2001, 35(2):137.
[1] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[2] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[3] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[4] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[5] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[6] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[7] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[8] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[9] 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 用于甲醛催化氧化的锰基催化剂及协同效应的影响[J]. 化学进展, 2019, 31(2/3): 311-321.
[10] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[11] 张晓东, 杨阳, 李红欣, 邹学军, 王玉新. 非TiO2光催化剂去除气态VOCs[J]. 化学进展, 2016, 28(10): 1550-1559.
[12] 王伟涛, 姚敏, 马养民, 张金. 氧气直接氧化苯制备苯酚[J]. 化学进展, 2014, 26(10): 1665-1672.
[13] 王猛, 惠永海, 张雪华, 魏雅娜, 史岷山, 王吉德*. 四氢呋喃的氧化[J]. 化学进展, 2013, 25(07): 1158-1165.
[14] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[15] 张俊, 陈婧, 黄新松, 李广社*. CO催化氧化用纳米材料及其最新研究成果[J]. 化学进展, 2012, 24(07): 1245-1251.