English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1615-1627 DOI: 10.7536/PC150505 前一篇   后一篇

• 综述与评论 •

导电聚合物薄膜的喷墨打印制备及其光电器件

杨雷, 程涛, 曾文进, 赖文勇*, 黄维*   

  1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 江苏省有机电子与信息显示协同创新中心 南京 210023
  • 收稿日期:2015-05-01 修回日期:2015-07-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 赖文勇, 黄维 E-mail:iamwylai@njupt.edu.cn;wei-huang@njtech.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2014CB648300)、国家自然科学基金项目(No.21422402,20904024,51173081,61136003)、江苏省自然科学基金(No.BK20140060,BK20130037,BM2012010)、江苏特聘教授计划项目(No.RK030STP15001)、教育部新世纪优秀人才(No.NCET-13-0872)、教育部博士点基金博导类项目(No.20133223110008)、教育部创新团队(IRT1148)、江苏高校优势学科建设工程资助项目(PAPD)、江苏省六大人才高峰项目(No.2012XCL035)和江苏省"青蓝工程"项目资助

Inkjet-Printed Conductive Polymer Films for Optoelectronic Devices

Yang Lei, Cheng Tao, Zeng Wenjin, Lai Wenyong*, Huang Wei*   

  1. Key Laboratory for Organic Electronics and Information Displays(KLOEID) & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2015-05-01 Revised:2015-07-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Key Basic Research Program of China(973 Program)(No.2014CB648300), the National Natural Science Foundation of China(No.21422402, 20904024, 51173081, 61136003), the Natural Science Foundation of Jiangsu Province(No.BK20140060, BK20130037, BM2012010), the Program for Jiangsu Specially-Appointed Professors(No.RK030STP15001), the Program for New Century Excellent Talents in University(No.NCET-13-0872), the Specialized Research Fund for the Doctoral Program of Higher Education(No.20133223110008), the Ministry of Education of China(IRT1148), the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD), the Six Talent Plan(No.2012XCL035) and Qing Lan Project of Jiangsu Province.
聚(3,4-乙撑二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)由于兼备优良的导电性和透光率,被广泛用于透明功能性薄膜的制备,可作为空穴传输层或直接用作电极,运用到有机光伏器件(OPV)、有机场效应晶体管(OFET)、有机发光二极管(OLED)等薄膜器件的结构中,部分实现了氧化铟锡(ITO)薄膜的替代。常见的溶液成膜工艺是旋涂法,这种工艺操作较为简便,但原料利用率低,并且难以大面积均匀制备及图案化制膜, 不利于规模化生产和推广。近年来,喷墨打印制膜技术得到人们越来越多的关注。由于喷墨打印制膜技术可在多种基底上快速、高效地制备均匀大面积薄膜,并可轻易地实现各种精细图案化的制作,可溶液加工,更与卷对卷加工技术兼容,因此能够很好地节约原料,降低能耗和制作成本。目前已被广泛应用于有机电子学各个领域,特别是在制备柔性器件方面,展现出独特优势。本文对基于导电聚合物PEDOT:PSS的喷墨打印工艺进行了系统的阐述,对其制膜、图案化及其电子器件应用等相关研究作了较为全面的总结,并展望了其应用前景,对于更为全面、深刻地理解和推动喷墨打印制膜技术在有机电子学领域的应用具有重要的指导和借鉴意义。
Poly(3, 4-ethylened ioxythiophene): poly(styrene sulfonicacid)(PEDOT:PSS) has been widely investigated as transparent conductive films due to its superior conductivity and transmittance. Films made from PEDOT:PSS have high optical transparency and excellent electrical conductivity; therefore they can be directly used as transparent electrodes or hole transport layers for organic photovoltaics(OPVs), organic field effect transistors(OFETs), organic light-emitting diodes(OLEDs), etc. Owing to the superior optoelectronic performance and excellent flexibility, they are promising alternative candidates for indium tin oxide(ITO) transparent electrodes. Spin coating is a ubiquitous method for film formation because of the facility and simplicity. However, wastage of raw materials and difficulty in large-area patterning severely restrict the extensive application of spin coating in film preparation. In contrast, inkjet printing is currently the most promising technology for the film forming due to its unique advantages, such as solution-processibility, material saving, low cost and compatibility with roll-to-roll technique. Furthermore, it is capable of rapidly and efficiently preparing large-area thin films with various patterns on different substrates, holding great promise in organic electronics especially for flexible electronic devices. This review summarizes recent advances in depositing PEDOT:PSS films via inkjet printing, and discusses further the prospects and challenges posed in this research field.

Contents
1 Introduction
2 Inkjet printing of PEDOT:PSS films
2.1 Inkjet printing
2.2 Inkjet-printed PEDOT:PSS films
2.3 Inkjet-printed hybrid electrodes
3 Inkjet-printed PEDOT:PSS films for optoelectronic devices
3.1 Organic field effect transistors(OFET)
3.2 Organic photovoltaics(OPV)
3.3 Organic light-emitting diodes(OLED)
3.4 Organic memory devices
4 Conclusion

中图分类号: 

()
[1] Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G. Phys. Rev. Lett., 1977, 39:1098.
[2] Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J. J. Chem. Soc.-Chem. Commun., 1977, 16:578.
[3] Huang W, Yu W L, Meng H, Pei J, Li S F Y. Chem. Mater., 1998, 10:3340.
[4] Yu W L, Meng H, Pei J, Huang W. J. Am. Chem. Soc., 1998, 120:11808.
[5] Xie L H, Yin C R, Lai W Y, Fan Q L, Huang W. Prog. Polym. Sci., 2012, 37:1192.
[6] Xu H, Chen R, Sun Q, Lai W Y, Su Q, Huang W, Liu X. Chem. Soc. Rev., 2014, 43:3259.
[7] Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W. Adv. Mater., 2010, 22:5227.
[8] Huang X, Han S, Huang W, Liu X. Chem. Soc. Rev., 2013, 42:173.
[9] Zotti G, Zecchin S, Schiavon G. Chem. Mater., 2000, 12:2996.
[10] 崔铮(Cui Z). 印刷电子学--材料、技术及其应用(Printed Electronics:Materials, Technologies and Applications). 北京:高等教育出版社(Beijing:Higher Education Press), 2012. 978.
[11] Wilson P, Lei C, Lekakou C, Watts J F. Org. Electron., 2014, 15:2043.
[12] Hoath S D, Jung S, Hsiao W K, Hutchings I M. Org. Electron., 2012, 13:3259.
[13] Nakashima H, Higgins M J, O'Connell C, Torimitsu K, Wallace G G. Langmuir, 2012, 28:804.
[14] Lipomi D J, Lee J A, Vosgueritchian M, Tee B C, Bolander J A, Bao Z N. Chem. Mater., 2012, 24:373.
[15] Chiolerio A, Rivolo P, Porro S, Stassi S, Ricciardi S, Mandracci P, Canavese G, Katarzyna B, Pirri C F. RSC Adv., 2014, 4:51477.
[16] Li J T, Ye F, Vaziri S, Muhammed M, Lemme M C, Östling M. Adv. Mater., 2013, 25:3985.
[17] Finn D J, Lotya M, Cunningham G, Smith R J, McCloskey D, Donegan J F, Coleman J N. J. Mater. Chem. C, 2014, 2:925.
[18] Tekin E, Smith P J, Schubert U S. Soft Matter, 2008, 4:703.
[19] Derby. B. Annu. Rev. Mater. Res., 2010, 40:395.
[20] Teichler A, Perelaer J, Schubert U S. J. Mater. Chem. C, 2013, 1:1910.
[21] Phongphut A, Sriprachuabwong C, Wisitsoraatb A, Tuantranont A, Prichanont S, Sritongkham P. Sensor Actuat B-Chem., 2013, 178:501.
[22] Martin G D, Hoath S D, Hutching I M. J. Phys.:Conf. Ser., 2008, 105:012001.
[23] Sou A, Jung S, Gili E, Pecunia Pecunia, Joimel J, Fichet G, Sirringhaus H. Org. Electron., 2014, 15:3111.
[24] Kang B J, Lee C K, Oh J H. Microelectron. Eng., 2012, 97:251.
[25] Yoshioka Y, Jabbour G E. Adv. Mater., 2006, 18:1307.
[26] Mustonen T, Kordás K, Saukko S, Tóth G, Penttilä J S, Helistö P, Seppä H, Jantunen H. Phys. Status Solidi(B), 2007, 244:4336.
[27] Kirchmeyer S, Reuter K. J. Mater. Chem., 2005, 15:2077.
[28] Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds J R. Adv. Mater., 2000, 12:481.
[29] Zhou J X, Fuh J Y H, Loh H T, Wong Y S, Ng Y S, Gray J J, Chua S J. Int. J. Adv. Manuf. Technol., 2010, 48:243.
[30] Calvert P. Chem. Mater., 2001, 13:3299.
[31] Ballarina B, Morgera A F, Frascaroc D, Marazzitab S, Pianab C, Setti L. Synthetic Met., 2004, 146:201.
[32] Hoath S D, Jung S, Hsiao W K, Hutchings L M. Org. Electron., 2012, 13:3259.
[33] López M A, Sánchez J C, Estrada M. 2008 7th International Caribbean Conference on Devices, Circuits and Systems, Mexico:IEEE, 2008. 165.
[34] Singh M, Haverinen H M, Dhagat P, Jabbour G E. Adv. Mater., 2010, 22:673.
[35] 邝旻翾(Kuang M X), 王京霞(Wang J X), 王利彬(Wang L B), 宋延林(Song Y L). 化学学报(Acta Chim. Sinica), 2012, 70:1889.
[36] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Nature, 1997, 389:827.
[37] 孙加振(Sun J Z), 邝旻翾(Kuang M X), 宋延林(Song Y L). 化学进展(Progress in Chemistry), 2015, 27(8):977.
[38] Xiong Z T, Liu C Q. Org. Electron., 2012, 13:1532.
[39] Jung S, Sou A, Gili E, Sirringhaus H. Org. Electron., 2013, 1:699.
[40] Wilson P, Lekakou C, Watts J F. Org. Electron., 2013, 14:3277.
[41] Dimitriev O P, Grinko D A, Noskov Y V, Ogurtsov N A, Pud A A. Synth. Met., 2009, 159:2237.
[42] Ummartyotin S, Juntaro J, Wu C, Sain M, Manuspiya H. J. Nanomater., 2011, 2011:606714.
[43] Keawprajak A, Koetniyom W, Piyakulawat P, Jiramitmongkon K, Pratontep S, Asawapirom U. Org. Electron., 2013, 14:402.
[44] Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, Haesendonck C, Vander A M, Salaneck W R, Berggren M. Chem. Mater., 2006, 18:4354.
[45] Xu W D, Zhang X W, Hu Q, Zhao L, Teng X Y, Lai W Y, Xia R D, Nelson J, Huang W, Bradley D D C. Org. Electron., 2014, 15:1244.
[46] Vosgueritchian M, Lipomi D J. Bao Z N. Adv. Funct. Mater., 2012, 22:421.
[47] Wilson P, Lekakou C, Watts J F. Org. Electron., 2012, 13:409.
[48] Lin S T, Chang M H, Horng J B, Cheng H L, Chou W Y. IEEE Organic Light Emitting Materials and Devices XI, 2007, 6655:733253.
[49] Yin Z P, Huang Y A, Bu N B, Wang X M, Xiong Y L. Chin. Sci. Bull., 2010, 55:3383.
[50] Ely F, Avellaneda C O, Paredez P, Nogueira V C, Santos T E A, Mammana V P, Molina C, Brug J, Gibson G, Zhao L. Synth. Met., 2011, 161:2129.
[51] Kuang M X, Wang L B, Song Y L. Adv. Mater., 2014, 26:6950.
[52] Lee S H, Hwang J Y, Kang K, Kang H. International Symposium on Optomechatronic Technologies, IEEE, 2009. 71.
[53] Xiong Z T, Liu C Q. Org. Electron., 2012, 13:1532.
[54] Denneulin A, Bras J, Blayo A, Khelifi B, Dherbey F R, Neuman C. Nanotechnology, 2009, 20:385701.
[55] Cheng T, Zhang Y Z, Lai W Y, Chen Y, Huang W. Chin. J. Chem., 2015, 33:147.
[56] Cheng T, Zhang Y Z, Lai W Y, Chen Y, Zeng W J, Huang W. J. Mater. Chem. C, 2014, 2:10369.
[57] Cheng T, Zhang Y Z, Lai W Y, Huang W. Adv. Mater., 2015, 27(22):3349.
[58] Denneulin A, Bras J, Carcone F, Neuman C, Blayo A. Carbon, 2011, 49:2603.
[59] Neophytou M, Hermerschmidt F, Savva A, Georgiou E, Choulis S A. Appl. Phys. Lett., 2012, 101:193302.
[60] Murali B, Kim D G, Kang J W, Kim J. Phys. Status Solidi A, 2014, 211:1801.
[61] Alshammari A S, Shkunov M, Silva S R. Colloid Polym. Sci., 2014, 292:661.
[62] Alshammari A S, Shkunov M, Silva S R. Phys. Status Solidi RRL., 2014, 8:150.
[63] Tung T T, Kim T Y, Shim J P, Yang W S, Kim H, Suh K S. Org. Electron., 2011, 12:2215.
[64] Hong W J, Xu Y X, Lu G, Li C, Shi G Q. Electrochem. Commun., 2008, 10:1555.
[65] Yin B, Liu Q, Yang L Y, Wu X M, Liu Z F, Hua Y L, Yin S G, Chen Y S. J. Nanosci. Nanotechnol., 2010, 10:1934.
[66] Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A. J. Mater. Chem., 2012, 22:5478.
[67] Ana Yun Y H, Lee B K, Chol J S, Kim S, Yoo B, Kim Y S, Park K, Cho Y W. Anal. Sci., 2011, 27:375.
[68] Mabrook M F, Christopher P, Petty M C. IEEE Sens. J., IEEE, 2006, 6.
[69] Seekaew Y, Lokavee S, Phokharatkul D, Wisitsoraat A, Kerdcharoen T, Wongchoosuk C. Org. Electron., 2014, 15:2971.
[70] Wongchoosuk C, Jangtawee P, Lokavee P, Udomrat S, Sudkeaw P, Kerdcharoen T. Adv. Mater., 2012, 506:39.
[71] Xue F L, Su Y, Varahramyan K. IEEE Trans. Electron Devices, 2005, 52:1982.
[72] Lim E. Mol. Cryst. Liq. Cryst., 2013, 585:53.
[73] Lim J A, Cho J H, Park Y D, Kim D H, Hwang M, Cho K. Appl. Phys. Lett., 2006, 88:082102.
[74] Zhang X H, Lee S M, Domercq B, Kippelen B. Appl. Phys. Lett., 2008, 92:243307.
[75] Lee M W, Lee M Y, Choi J C, Park J S, Song C K. Org. Electron., 2010, 11:854.
[76] Basiricò L, Cosseddu P, Fraboni B, Bonfiglio A. Thin Solid Films, 2011, 520:1291.
[77] Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. Science, 2000, 290:2123.
[78] Wang J Z, Zheng Z H, Li H W, Huck W T S, Sirringhaus H. Nat. Mater., 2004, 3:171.
[79] Sele C W, Werne T, Friend R H, Sirringhaus H. Adv. Mater., 2005, 17:997.
[80] Luzio A, Musumeci C, Newman C R, Facchetti A, Marks T J, Pignataro B. Chem. Mater., 2011, 23:1061.
[81] Angelica G I, Girolamo D A, Fausta L, Pasquale M, Fulvia V. J. Nanosci. Nanotechnol., 2013, 13:5175.
[82] Schmidt G C, Hoft D, Bhuie M, Haase K, Bellmann M, Haidu F, Lehmann D, Zahn D R T, Hubler A C. Appl. Phys. Lett., 2013, 103:113302.
[83] Mauro A G, Diana R, Grimaldi I A, Loffredo F, Morvillo P, Villani F, Minarini C. Polym. Composite., 2013, 34:1493.
[84] Yu J S, Kim I, Kim J S, Jo J, Larsen T, Sndergaard R R, Hösel M, Angmo D, Jrgensen M, Krebs F C. Nanoscale, 2012, 4:6032.
[85] Eom S H, Senthilarasu S, Uthirakumar P, Yoon S C, Lim J, Lee C, Lim H S, Lee J, Lee S H. Org. Electron., 2009, 10:536.
[86] Eom S H, Park H, Mujawar S H, Yoon S C, Kim S S, Na S I, Kang S J, Khim D, Kim D Y, Lee S H. Org. Electron., 2010, 11:1516.
[87] Hu B, Li D P, Ala O, Manandhar P, Fan Q G, Kasilingam D, Calvert P D. Adv.Funct. Mater., 2011, 21:305.
[88] Zheng H, Zheng Y N, Liu N L, Ai N, Wang Q, Wu S, Zhou J H, Hu D G, Yu S F, Han S H, Xu W, Luo C, Meng Y H, Jiang Z X, Chen Y W, Li D Y, Huang F, Wang J, Peng J B, Cao Y. Nat. Commun., 2013, 4:1.
[89] Ely F, Avellaneda C O, Paredez P, Nogueira V C, Santos T E A, Mammana V P, Molina C, Brug J, Gibson G, Zhao L. Synthetic Met., 2011, 161:2129.
[90] Evelin F, Stefan S, Ullrich S, Gernot M, Erik M, Katharina L, List E W. Appl. Phys. Lett., 2008, 92:183305.
[91] Yoshioka Y, Jabbour G E. Synthetic Met., 2006, 156:779.
[92] Bolink H J, Coronado E, Orozco J, Sessolo M. Adv. Mater., 2009, 21:79.
[93] Gorter H, Coenen M J J, Slaats M W L, Ren M, Lu W, Kuijpers C J, Groen W A. Thin Solid Films, 2013, 532:11.
[94] 密保秀(Mi B X), 王海珊(Wang H S), 高志强(Gao Z Q), 王旭鹏(Wang X P), 陈润锋(Chen R F), 黄维(Huang W). 化学进展(Prog. Chem.), 2011, 1:136.
[95] 徐巍栋(Xu W D), 赖文勇(Lai W Y), 范曲立(Fan Q L), 黄维(Huang W). 中国科学:化学(Sci. China Chem.), 2011, 3:409.
[96] Ma L P, Liu J, Yang Y. Appl. Phys. Lett., 2002, 80:2997.
[97] Zhuang X D, Chen Y, Liu G, Li P P, Zhu C X, Kang E T, Noeh K G, Zhang B, Zhu J H, Li Y X. Adv. Mater., 2010:1731.
[98] Zhuang X D, Chen Y, Li B X, Ma D G, Zhang B, Li Y X. Chem. Mater., 2010, 22:4455.
[99] Wang J P, Cheng X Y, Caironi M, Gao F, Yang X D, Greenham N C. Org. Electron., 2011,12:1271.
[100] Bhansali U S, Khan M A, Alshareef H N. Microelectron. Eng., 2013,105:68.
[101] Bhansali U S, Khan M A, Cha D, AlMadhoun M N, Li R P, Chen L, Amassian A, Odeh I N, Alshareef H N. ACS Nano, 2013, 7:10518.
[1] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[2] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[3] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[4] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[5] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[6] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[7] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[8] 杨智文, 詹迎迎, 籍少敏, 杨庆旦, 李琦, 霍延平. 含硼有机发光二极管材料与器件[J]. 化学进展, 2019, 31(6): 906-928.
[9] 张奇, 项徽清, 刘建国, 曾晓雁. 喷墨打印制备高性能薄膜晶体管的材料体系[J]. 化学进展, 2019, 31(10): 1417-1424.
[10] 蔡勤山, 王世荣, 肖殷, 李祥高. 交联型小分子空穴传输材料在溶液工艺制备有机发光二极管中的应用[J]. 化学进展, 2018, 30(8): 1202-1221.
[11] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[12] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[13] 吴阳, 王再禹, 孟向毅, 马伟. 同步辐射共振软X射线散射对有机太阳能电池中活性层形貌的解析[J]. 化学进展, 2017, 29(1): 93-101.
[14] 胡传波, 厉英, 孔亚州, 丁玉石. 改性聚苯胺及其衍生物涂层的防腐性能[J]. 化学进展, 2016, 28(8): 1238-1250.
[15] 姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 基于给-受体结构的热活化延迟荧光材料[J]. 化学进展, 2016, 28(12): 1811-1823.