English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1812-1822 DOI: 10.7536/PC200920 前一篇   后一篇

• 综述 •

硫化零价铁去除水中污染物的效能及交互机制

顾凯丽1,2, 李浩贞1,2, 张晋华1,2, 李锦祥1,2,*()   

  1. 1 南京理工大学环境与生物工程学院 南京 210094
    2 化工污染控制与资源化江苏省高校重点实验室 南京 210094
  • 收稿日期:2020-09-09 修回日期:2020-10-09 出版日期:2021-10-20 发布日期:2020-11-30
  • 通讯作者: 李锦祥
  • 基金资助:
    国家自然科学基金项目(51708416); 中央高校基本科研业务费专项资金(30919011267); 污染控制与资源化研究国家重点实验室开放课题(PCRRF19005)

Performances and Interactions of Contaminants Removal from Water by Sulfidated Zerovalent Iron

Kaili Gu1,2, Haozhen Li1,2, Jinhua Zhang1,2, Jinxiang Li1,2()   

  1. 1 School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing 210094, China
  • Received:2020-09-09 Revised:2020-10-09 Online:2021-10-20 Published:2020-11-30
  • Contact: Jinxiang Li
  • Supported by:
    National Natural Science Foundation of China(51708416); Fundamental Research Founds for the Central Universities(30919011267); State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF19005)

如何同步提升零价铁去除水中污染物的反应速率和电子选择性已成为近年研究热点。基于无氧体系下硫化能通过抑制零价铁与水之间的副反应而改善体系还原除污染物效能,系统概括了不同硫化方式、硫化药剂和硫化程度合成的硫化零价铁理化特征,并揭示了其与硫化零价铁在不同水氧环境下去除不同污染物反应活性和电子选择性的交互机制。硫化能够主要通过调控界面亲疏水和导电性能而实现改善零价铁除污染的效能,其提升表现主要依赖于硫化程度,而与硫化方式、硫化药剂相关性较低。最后,展望了基于硫化零价铁的水污染控制技术在地下水修复和工业废水处理的应用前景。

In recent years, synchronously mediating the reactivity and electron selectivity(ES) of zerovalent iron(ZVI) toward target contaminant has been of great interest but challenging to researchers. Sulfidation can suppress the side reaction of ZVI with water under anaerobic conditions and thus improve the ES toward target contaminants. As such, this review systematically summarizes the physicochemical characteristics of sulfidated ZVI(S-ZVI) as function of the sulfidation approaches, reagents and extents. Then, this work analyzes the interactions of contaminants removal by S-ZVI. Typically, the sulfidation can tune the electrical conductivity and/or hydrophobicity of ZVI, thereby enhancing the reactivity and ES toward target contaminants under aerobic or anaerobic conditions, which is strongly dependent on S/Fe molar ratio but without regard to the approaches and reagents of sulfidation. Finally, the application potentials of S-ZVI for groundwater remediation and wastewater treatment are also outlooked.

Contents

1 Introduction

2 Preparations and morphology of S-ZVI

2.1 One-step synthesis

2.2 Two-step synthesis

2.3 Ball-milling synthesis

3 Surface and bulk characteristics of S-ZVI

3.1 Surface information

3.2 Valence state and distribution of S/Fe

3.3 Bulk contents of S and Fe

4 Physical and chemical properties of S-ZVI

4.1 Conductivity

4.2 Hydrophobicity

4.3 H2 evolution rate

5 Decontamination performances of S-ZVI

5.1 Reactivity

5.2 Electron selectivity

6 Engineering applications

7 Conclusion and outlook

()
图1 S-ZVI(a) 一步法,(b) 两步法,(c) 球磨法合成示意图以及对应(d) S-nZVIone-step的SEM[41]和TEM[42],(e) S-nZVItwo-step的SEM[43]和TEM[28],(f) S-mZVIbm的SEM[44]
Fig. 1 Schematic diagrams of the synthesis methods of S-ZVI and its morphology and structure.(a) one-step method,(b) two-step method,(c) ball milling method;(d) SEM[41] and TEM[42] images of S-nZVIone-step,(e) SEM[43] and TEM[28] images of S-nZVItwo-step,(f) SEM[44] image of S-mZVIbm
图2 不同硫化方法及S/Fe摩尔比下S-ZVI颗粒的(a) 比表面积[36,42,54,56⇓⇓ ~59,67];(b) 相关表面信息[36,42,55]
Fig. 2 (a) Specific surface area[36,42,54,56⇓⇓ ~59,67] and(b) related surface information of S-ZVI particles under different sulfide-modified methods and S/Fe molar ratios[36,42,55]
图3 硫化方法与S/Fe摩尔比对S-ZVI颗粒(a) 表面硫铁形态分布[49,53,54,57,61];(b) 表面硫铁含量[39,54,59]的影响
Fig. 3 Effects of sulfide-modified methods and S/Fe molar ratios on(a) S speciation and Fe speciation on the surfac e [49,53,54,57,61];(b) the content of S and Fe0 on the surface[39,54,59] of S-ZVI particles
图4 硫化方法与S/Fe 摩尔比对S-ZVI的(a) 拟合电阻[39,28,53,54];(b) 接触角[39,57];(c) H2释放速率[36,39,57,63]
Fig. 4 Effects of sulfide-modified methods and S/Fe molar ratios on(a) the fitted resistance[28,39,53,54](b) contact angle[39,57];(c) H2 evolution rate[36,39,57,63] of S-ZVI
图5 不同硫化方法与S/Fe摩尔比下S-ZVI去除污染物的(a) 比表面积归一化常数[30,31,36,42,54,59,64]及(b) 电子效率[28,30,39,54,57,61,67,68]
Fig. 5 (a) Surface-area-normalized rate constant[30,31,36,42,54,59,64] and(b) electron efficiency of contaminants removal by S-ZVI under different sulfide-modified methods and S/Fe molar ratios[28,30,39,54,57,61,67,68]
图6 S-nZVI用于原位地下水修复的实地研究[70]
Fig. 6 A field study of S-nZVI for in situ groundwater remediation[70]
[1]
Rangsivek R, Jekel M R. Water Res., 2005, 39(17): 4153.

pmid: 16181656
[2]
Shokes T E, Möller G. Environ. Sci. Technol., 1999, 33(2): 282.

doi: 10.1021/es980543x     URL    
[3]
Arnold W A, Roberts A L. Environ. Sci. Technol., 2000, 34(9): 1794.

doi: 10.1021/es990884q     URL    
[4]
Hung H M, Hoffmann M R. Environ. Sci. Technol., 1998, 32(19): 3011.

doi: 10.1021/es980273i     URL    
[5]
Keum Y S, Li Q X. Chemosphere, 2004, 54(3): 255.

doi: 10.1016/j.chemosphere.2003.08.003     URL    
[6]
Agrawal A, Tratnyek P G. Environ. Sci. Technol., 1996, 30(1): 153.

doi: 10.1021/es950211h     URL    
[7]
Nam S, Tratnyek P G. Water Res., 2000, 34(6): 1837.

doi: 10.1016/S0043-1354(99)00331-0     URL    
[8]
Pereira W S, Freire R S. J. Braz. Chem. Soc., 2006, 17(5): 832.

doi: 10.1590/S0103-50532006000500003     URL    
[9]
Fu F L, Dionysiou D D, Liu H. J. Hazard. Mater., 2014, 267: 194.
[10]
Naseri E, NdÉ-TchoupÉ A, Mwakabona H, Nanseu-Njiki C, Noubactep C, Njau K, Wydra K. Sustainability, 2017, 9(7): 1224.
[11]
Guan X H, Sun Y K, Qin H J, Li J X, Lo I M C, He D, Dong H R. Water Res., 2015, 75: 224.

doi: 10.1016/j.watres.2015.02.034     URL    
[12]
Sun Y K, Li J X, Huang T L, Guan X H. Water Res., 2016, 100: 277.

doi: 10.1016/j.watres.2016.05.031     URL    
[13]
Li J X, Sun Y K, Zhang X Y, Guan X H. J. Hazard. Mater., 2020, 400: 123330.

doi: 10.1016/j.jhazmat.2020.123330     URL    
[14]
Yang S Y, Reng T F, Zhang Y X, Zheng D, Xin J. Progress in Chemistry, 2017, 29(4): 388.
( 杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, 29(4): 388.)

doi: 10.7536/PC170133    
[15]
Qiu X H, Fang Z Q. Progress in Chemistry, 2010, 22(2/3): 291.
( 邱心泓, 方战强. 化学进展, 2010, 22(2/3): 291.)
[16]
Yang K L, Zhou J S, Lv D, Sun Y, Lou Z M, Xu X H. Progress in Chemistry, 2017, 29(11): 1407.
( 杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华. 化学进展, 2017, 29(11): 1407.)

doi: 10.7536/PC170634    
[17]
Wang S C, Song Y D, Sun Y K. Progress in Chemistry, 2019, 31(2/3): 422.
( 王舒畅, 宋亚丹, 孙远奎. 化学进展, 2019, 31(2/3): 422.)

doi: 10.7536/PC180726    
[18]
Zhang J H, Cheng Z Y, Yang X G, Luo J Q, Li H Z, Chen H M, Zhang Q, Li J X. Chem. Eng. J., 2020, 393: 124779.

doi: 10.1016/j.cej.2020.124779     URL    
[19]
Kanel S R, Nepal D, Manning B, Choi H. J. Nanoparticle Res., 2007, 9(5): 725.
[20]
O'Carroll D, Sleep B, Krol M, Boparai H, Kocur C. Adv. Water Resour., 2013, 51: 104.

doi: 10.1016/j.advwatres.2012.02.005     URL    
[21]
Liu H, Wang Q, Wang C, Li X Z. Chem. Eng. J., 2013, 215-216: 90.
[22]
He F, Gong L, Fan D M, Tratnyek P G, Lowry G V. Environ. Sci.: Processes Impacts, 2020, 22(3): 528.
[23]
Fan S F, Xin J, Hang J Y, Rong W L, Zheng X L. Progress in Chemistry, 2018, 30(7): 1035.
( 范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 化学进展, 2018, 30(7): 1035.)

doi: 10.7536/PC171106    
[24]
Fan D M, O'Brien Johnson G, Tratnyek P G, Johnson R L. Environ. Sci. Technol., 2016, 50(17): 9558.

doi: 10.1021/acs.est.6b02170     URL    
[25]
Fan D M, Anitori R P, Tebo B M, Tratnyek P G, Lezama Pacheco J S, Kukkadapu R K, Engelhard M H, Bowden M E, Kovarik L, Arey B W. Environ. Sci. Technol., 2013, 47(10): 5302.
[26]
Qin H J, Guan X H, Bandstra J Z, Johnson R L, Tratnyek P G. Environ. Sci. Technol., 2018, 52(23): 13887.

doi: 10.1021/acs.est.8b04436     URL    
[27]
Kim E J, Kim J H, Azad A M, Chang Y S. ACS Appl. Mater. Interfaces, 2011, 3(5): 1457.
[28]
Xu J, Cao Z, Zhou H, Lou Z M, Wang Y, Xu X H, Lowry G V. Environ. Sci. Technol., 2019, 53(22): 13344.

doi: 10.1021/acs.est.9b04210     URL    
[29]
Su Y M, Adeleye A S, Keller A A, Huang Y X, Dai C M, Zhou X F, Zhang Y L. Water Res., 2015, 74: 47.

doi: 10.1016/j.watres.2015.02.004     URL    
[30]
Gu Y W, Gong L, Qi J L, Cai S C, Tu W X, He F. Water Res., 2019, 159: 233.
[31]
Li D, Mao Z, Zhong Y, Huang W L, Wu Y D, Peng P A. Water Res., 2016, 103: 1.

doi: 10.1016/j.watres.2016.07.003     URL    
[32]
Wang B, Dong H R, Li L, Wang Y Y, Ning Q, Tang L, Zeng G M. Chem. Eng. J., 2020, 381: 122773.

doi: 10.1016/j.cej.2019.122773     URL    
[33]
Rajajayavel S R C, Ghoshal S. Water Res., 2015, 78: 144.

doi: 10.1016/j.watres.2015.04.009     pmid: 25935369
[34]
Li J X, Zhang X Y, Sun Y K, Liang L P, Pan B C, Zhang W M, Guan X H. Environ. Sci. Technol., 2017, 51(23): 13533.
[35]
Fan D M, Lan Y, Tratnyek P G, Johnson R L, Filip J, O'Carroll D M, Nunez Garcia A, Agrawal A. Environ. Sci. Technol., 2017, 51(22): 13070.

doi: 10.1021/acs.est.7b04177     URL    
[36]
Bhattacharjee S, Ghoshal S. Environ. Sci. Technol., 2018, 52(19): 11078.

doi: 10.1021/acs.est.8b02399     pmid: 30188121
[37]
Mangayayam M, Dideriksen K, Ceccato M, Tobler D J. Environ. Sci. Technol., 2019, 53(8): 4389.

doi: 10.1021/acs.est.8b06480     pmid: 30859830
[38]
Mangayayam M C, Perez J P H, Dideriksen K, Freeman H M, Bovet N, Benning L G, Tobler D J. Environ. Sci.: Nano, 2019, 6(11): 3422.
[39]
Xu J, Avellan A, Li H, Liu X T, Noël V, Lou Z M, Wang Y, Kaegi R, Henkelman G, Lowry G V. Adv. Mater., 2020, 32(17): 1906910.

doi: 10.1002/adma.v32.17     URL    
[40]
Tang J, Tang L, Feng H P, Dong H R, Zhang Y, Liu S S, Zeng G M. Acta Chim. Sinica, 2017, 75(6): 575.

doi: 10.6023/A17020045    
( 汤晶, 汤琳, 冯浩朋, 董浩然, 章毅, 刘思诗, 曾光明. 化学学报, 2017, 75(6): 575.)

doi: 10.6023/A17020045    
[41]
Pang H W, Diao Z F, Wang X X, Ma Y, Yu S J, Zhu H T, Chen Z S, Hu B W, Chen J R, Wang X K. Chem. Eng. J., 2019, 366: 368.

doi: 10.1016/j.cej.2019.02.098     URL    
[42]
Lv D, Zhou J S, Cao Z, Xu J, Liu Y L, Li Y Z, Yang K L, Lou Z M, Lou L P, Xu X H. Chemosphere, 2019, 224: 306.

doi: 10.1016/j.chemosphere.2019.02.109     URL    
[43]
Mangayayam M C, Alonso-De-linaje V, Dideriksen K, Tobler D J. Chemosphere, 2020, 249: 126137.

doi: S0045-6535(20)30330-1     pmid: 32058137
[44]
Guo W Q, Zhao Q, Du J S, Wang H Z, Li X F, Ren N Q. Chem. Eng. J., 2020, 388: 124303.
[45]
Bae S, Collins R N, Waite T D, Hanna K. Environ. Sci. Technol., 2018, 52(21): 12010.

doi: 10.1021/acs.est.8b01734     URL    
[46]
Yan W L, Ramos M A V, Koel B E, Zhang W X. J. Phys. Chem. C, 2012, 116(9): 5303.

doi: 10.1021/jp208600n     URL    
[47]
Ling L, Zhang W X. Environ. Sci. Technol. Lett., 2014, 1(7): 305.

doi: 10.1021/ez5001512     URL    
[48]
Ramos M A V, Yan W L, Li X Q, Koel B E, Zhang W X. J. Phys. Chem. C, 2009, 113(33): 14591.

doi: 10.1021/jp9051837     URL    
[49]
Wu D L, Peng S H, Yan K L, Shao B B, Feng Y, Zhang Y L. ACS Sustainable Chem. Eng., 2018, 6(3): 3039.

doi: 10.1021/acssuschemeng.7b02787     URL    
[50]
Li S L, Yan W L, Zhang W X. Green Chem., 2009, 11(10): 1618.

doi: 10.1039/b913056j     URL    
[51]
Xu F Y, Deng S B, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G. Environ. Sci. Technol., 2012, 46(8): 4576.

doi: 10.1021/es203876e     URL    
[52]
Gao J, Wang W, Rondinone A J, He F, Liang L Y. J. Hazard. Mater., 2015, 300: 443.

doi: 10.1016/j.jhazmat.2015.07.038     URL    
[53]
Gu Y W, Wang B B, He F, Bradley M J, Tratnyek P G. Environ. Sci. Technol., 2017, 51(21): 12653.

doi: 10.1021/acs.est.7b03604     URL    
[54]
Li J X, Zhang X Y, Liu M C, Pan B C, Zhang W M, Shi Z, Guan X H. Environ. Sci. Technol., 2018, 52(5): 2988.
[55]
Du J K, Bao J G, Lu C H, Werner D. Water Res., 2016, 102: 73.

doi: 10.1016/j.watres.2016.06.009     URL    
[56]
Li D, Zhu X F, Zhong Y, Huang W L, Peng P A. Water Res., 2017, 121: 140.

doi: 10.1016/j.watres.2017.05.019     URL    
[57]
Xu J, Wang Y, Weng C, Bai W L, Jiao Y, Kaegi R, Lowry G V. Environ. Sci. Technol., 2019, 53(10): 5936.
[58]
Zou H W, Hu E D, Yang S Y, Gong L, He F. Sci. Total. Environ., 2019, 650: 419.
[59]
Wu J, Zhao J, Hou J, Zeng R J, Xing B S. Environ. Sci. Technol., 2019, 53(14): 8105.

doi: 10.1021/acs.est.8b06834     URL    
[60]
Su Y M, Jassby D, Song S K, Zhou X F, Zhao H Y, Filip J, Petala E, Zhang Y L. Environ. Sci. Technol., 2018, 52(11): 6466.

doi: 10.1021/acs.est.8b00231     URL    
[61]
Xu W Q, Li Z J, Shi S S, Qi J L, Cai S C, Yu Y, O'Carroll D M, He F. Appl. Catal. B: Environ., 2020, 262: 118303.
[62]
Dong H R, Zhang C, Deng J M, Jiang Z, Zhang L H, Cheng Y J, Hou K J, Tang L, Zeng G M. Water Res., 2018, 135: 1.
[63]
Cao Z, Li H, Xu X H, Xu J. Chem. Eng. J., 2020, 394: 124876.
[64]
Wei X P, Yin H, Peng H, Guo Z Y, Lu G N, Dang Z. Chem. Eng. J., 2020, 395: 125085.

doi: 10.1016/j.cej.2020.125085     URL    
[65]
Cao Z, Liu X, Xu J, Zhang J, Yang Y, Zhou J L, Xu X H, Lowry G V. Environ. Sci. Technol., 2017, 51(19): 11269.

doi: 10.1021/acs.est.7b02480     URL    
[66]
Lv D, Zhou X X, Zhou J S, Liu Y L, Li Y Z, Yang K L, Lou Z M, Baig S A, Wu D L, Xu X H. Appl. Surf. Sci., 2018, 442: 114.

doi: 10.1016/j.apsusc.2018.02.085     URL    
[67]
He F, Li Z J, Shi S S, Xu W Q, Sheng H Z, Gu Y W, Jiang Y H, Xi B D. Environ. Sci. Technol., 2018, 52(15): 8627.

doi: 10.1021/acs.est.8b01735     URL    
[68]
Gong L, Lv N, Qi J L, Qiu X J, Gu Y W, He F. J. Hazard. Mater., 2020, 396: 122620.

doi: 10.1016/j.jhazmat.2020.122620     URL    
[69]
Mikhail Khudenko B. Water Sci. Technol., 1991, 2310-12: 1873.
[70]
Nunez Garcia A, Boparai H K, Chowdhury A I A, de Boer C V, Kocur C M D, Passeport E, Sherwood Lollar B, Austrins L M, Herrera J, O'Carroll D M. Water Res., 2020, 174: 115594.

doi: S0043-1354(20)30130-5     pmid: 32092544
[71]
Nunez Garcia A, Boparai H K, de Boer C V, Chowdhury A I A, Kocur C M D, Austrins L M, Herrera J, O'Carroll D M. Water Res., 2020, 170: 115319.

doi: S0043-1354(19)31093-0     pmid: 31790885
[1] 张辉, 王珊珊, 余金山. 低对称性二维ReS2及其异质结的化学气相沉积法制备及性质[J]. 化学进展, 2022, 34(6): 1440-1452.
[2] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[3] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[4] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[5] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[8] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[9] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[10] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[11] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[12] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[13] 王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019, 31(2/3): 422-432.
[14] 范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 基于零价铁的地下水化学还原修复体系中的电子转移有效性和电子竞争机制[J]. 化学进展, 2018, 30(7): 1035-1046.
[15] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.