English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1874-1886 DOI: 10.7536/PC200902 前一篇   后一篇

• 综述 •

多孔液体在气体捕集与分离领域的应用

王德超, 辛洋洋, 李晓倩, 姚东东*(), 郑亚萍*()   

  1. 西北工业大学化学与化工学院 西安 710129
  • 收稿日期:2020-09-03 修回日期:2020-11-05 出版日期:2021-10-20 发布日期:2020-12-21
  • 通讯作者: 姚东东, 郑亚萍
  • 基金资助:
    西北工业大学博士论文创新基金(CX201963); 国家自然科学基金(21905228); 航空基金(2018ZF53065)

Porous liquids and Their Applications in Gas Capture and Separation

Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao(), Yaping Zheng()   

  1. School of Chemistry and Chemical Engineering, Northwestern Polytechnical University,Xi'an 710129, China
  • Received:2020-09-03 Revised:2020-11-05 Online:2021-10-20 Published:2020-12-21
  • Contact: Dongdong Yao, Yaping Zheng
  • Supported by:
    Innovation Foundation for Doctor Dissertation of NWPU(CX201963); National Natural Science Foundation of China(21905228); Aeronautical Science Foundation of China(2018ZF53065)

多孔液体是指具有永久性孔隙的液体材料,其将多孔固体的有序规整孔道和液体的流动性等诸多优点相结合,在气体捕集与分离领域表现出巨大的应用潜力,成为新的研究热点。本文首先简单阐述了多孔液体的概念及分类,并总结了多孔液体形成的必要条件;然后分别详细综述了三类多孔液体的合成进展,并阐述了多孔液体在气体捕集与分离方面的应用,着重介绍了近五年的研究进展;最后对其现存的挑战及未来展望进行了总结。

Porous liquids(PLs), an emerging class of liquid materials with permanent porosity and good fluidity, have shown great potential in gas capture and separation. As a result, PLs used as gas capture materials have become a new research hot spot. In the present paper, the concept of PLs is firstly introduced in a nutshell. Then, the composition characteristics and the necessary conditions for constructing PLs are analyzed. Next, the synthesis progress of these three types of PLs are reviewed in detail, and their gas capture and separation performance are analyzed, especially after 2015. Lastly, the existing challenges of porous liquids and their outlooks of synthetic methods and applications in gas capture are outlined and presented.

Contents

1 Introduction

2 The classification of porous liquids and characteristics of composition

3 The synthesis progress of porous liquids and gas capture

3.1 The Type 1 porous liquids

3.2 The Type 2 porous liquids

3.3 The Type 3 porous liquids

4 Conclusion and outlook

()
图1 多孔液体相关文章的发表情况
Fig. 1 Publication of articles associated with porous liquids
图2 多孔液体的分类 (根据组成成分分类[30])
Fig. 2 Three classes of porous liquids based on the component properties(Reproduced from Ref.[30] with permission from Wiley)
图4 (a) 气体渗透量(i) PEGS, (ii) HS- liquid, (iii) SS-liquid, (iv) CS-liquid, (v) CS/Ni-liquid[30];(b)支撑多孔液膜的气体分离示意图[30];(c) HCS-liquid 、PEGS、SCS-liquid 和PILs-PEGS 的CO2的吸脱附等温线(10 bar, 298 K)[54];(d)多孔液体PS-OS@SiNR的吸附与脱附等温线[69];(e) 有机高分子长链改性中空硅壳纳米棒制备各向异性的多孔液体[69];(f) 静电辅助空心二氧化硅制备多孔液体[70]
Fig. 4 (a) Gas permeability obtained on (i) PEGS, (ii) HS- liquid, (iii) SS-liquid, (iv) CS-liquid, and (v) CS/Ni-liquid;(Reproduced from Ref. [30] with permission from Wiley)(b) Schematic representation of gas separation in membrane supported HS-liquid;(Reproduced from Ref. [30] with permission from Wiley)(c) CO2 adsorption-desorption isotherms of HCS-liquid, PEGS, SCS-liquid and PILs-PEGS composite collected below 10 bar at 298 K, respectively;(Reproduced from Ref. [54] with permission from Wiley)(d) The adsorption(closed symbols) and desorption(open symbols) cycles in solvent-free PS-OS@SiNR show hysteresis;(Reproduced from Ref. [69] with permission from the Royal Society of Chemistry)(e) Schematic showing the three-step procedure for the fabrication of the anisotropic porous liquid from SiNRs.(Reproduced from Ref. [69] with permission from the Royal Society of Chemistry)(f) Synthesis and schematic structures of hollow silica and porous liquid.(Reproduced from Ref. [70] with permission from the Chemical Industry Press)
图3 (a) 多孔有机笼的合成[51];(b) 上:阴离子有机笼的合成步骤与化学结构,中:15-冠-5和二环己烷并18-冠-6的化学结构,下:阴离子的共价有机笼多孔液体的合成[53];(c) 两步法合成空心SiO2多孔液体[30];(d) 静电辅助多孔液体的制备示意图[54];(e) 空心SiO2多孔液体的合成[55]
Fig. 3 (a) Synthesis of dodecaalkyl iminospherand cages.(Reproduced from Ref. [51] with permission from the Royal Society of Chemistry)(b) Top: Synthetic procedure and chemical structure of anionic covalent cage(ACC). Middle: Chemical structures of 15-crown-5 and dicyclohexano-18-crown-6. Bottom: Schematic representation of synthetic procedures for the crown ether-ACC porous liquids.(Reproduced from Ref. [53] with permission from the American Chemical Society)(c) Two-step synthetic strategy for porous liquids fabrication. HS=hollow silica, OS=organosilane.(Reproduced from Ref. [30] with permission from Wiley)(d) Synthesis strategy for HCS-liquid.(Reproduced from Ref. [20] with permission from Wiley)(e) Synthesis of hollow silica porous liquids.(Reproduced from Ref. [55] with permission from Wiley)
图5 (a) 多孔液体的制备:a1:冠醚的合成;a2:吸附量对比[24];(b) b1:CC3-R, CC13与33 :133-R乱序笼结构的对比;b2:CC33133笼的计算模型,展示出内在空腔结构;b3:多孔液体的计算模型及未被占据的多孔空腔;b4:CH4吸附量的对比[80];(c) c1:所选择的14种位阻溶剂;c2:Xe的吸附行为;c3:5种高溶解性的位阻溶剂[81];(d) d1:具有乱序笼的CC33 :13-R(左)和 CC15-R(右);d2:N2的吸附脱附曲线;d3:不同气体在多孔液体PLs上的吸附量对比;d4:气体在液体与POC中的对比[82];(e) e1:MOP多孔液体的合成步骤;e2:可接触的自由体积;e3:气体渗透量对比[29]
Fig. 5 (a) a: Preparation of porous liquid. a1: Synthesis of the crown-ether cage. a2: The comparation of sorption capacity;(adapted from Ref. [24])(b) b1: Comparison of the ‘parent' CC3-R and CC13 cage structures with the scrambled 33 :133-R mixture, b2: Schematic representation of the scrambled CC33133 cage used in the computational modeling showing the guest-accessible intrinsic cavity, b3: molecular simulation of the scrambled porous liquid showing the available free space in the cages(purple spheres); PCP solvent molecules shown as pale blue spheres; cage molecules omitted for clarity; b3: Comparison of the calculated CH4 uptake(mmol/mL) observed in PCP ;(Reproduced from Ref. [80] with permission from the Royal Society of Chemistry)(c) c1: The 14 bulky solvents screened for both cage solubility and size-exclusion from the cage cavity, c2: Comparison of the amount of Xenon evolved at different concentrations and using different release mechanisms; c3: The five highly solubilising candidate solvents, all displaced small volumes of gas from the known porous liquid.(Reproduced from Ref. [81] with permission from the Royal Society of Chemistry)(d) d1: Structures of the trans-33133 component of the scrambled cage mixture CC33 :133-R(magenta, left) and CC15-R(teal, right) with the average window diameters calculated using the pywindow package, d2: N2 adsorption(filled) and desorption(empty) isotherms for CC33 :133-R and CC15-R, d3: Uptake by volumetric gas evolution for CH4, CO2, Xe, and N2 for CC33 :133-R(magenta) and CC15-R(teal) PLs, d4: Comparison of gas uptake in the liquid and solid state for each POC;(Reproduced from Ref. [82] with permission from the Royal Society of Chemistry)(e) e1: Schematic preparation process of porous liquid. e2: Accessible void space displayed by accessible Voronoi node for CO2 in 15-crown-5 system. e3: Permeance of H2, CO2 and N2 in 15-crown-5/GO and PLs-5 wt%/GO at 60 ℃.(Reproduced from Ref. [29] with permission from Willey)
图6 (a) 金属有机骨架多孔液体表面改性、设计和溶剂设计图[20];(b) b1:多孔液体沸石(H-ZSM-5-liquid/[P6,6,6,14][Br])制备示意图;b2 沸石内部空腔[40];(c) ZIF-8多孔液体的合成[95];(d) d1:多孔液体的照片;d2: 水蒸气的等温吸附线[20];(e) 多孔沸石液体的吸附量对比[40];(f) ZIF-8多孔液体的CO2吸附-脱附等温线[95]
Fig. 6 (a) Schematic illustration of surface engineering, filler design, and solvent design for the construction of MOF-based porous liquids.(Reproduced from Ref. [20] with permission from the American Chemical Society)(b) b1: Depiction of the preparation strategy for the porous liquid zeolites(H-ZSM-5-liquid/[P6,6,6,14][Br]); b2: internal cavity of zeolite.(Reproduced from Ref. [40] with permission from the Royal Society of Chemistry),(c): Schematic illustration of the formation of ZIF-8 porous liquid.(Reproduced from Ref. [95] with permission from the American Chemical Society),(d) d1: Photos of tilting a vial of PL, d2: Water vapor sorption isotherms at 298 K of PLs after 3 months storage(Reproduced from Ref. [20] with permission from the American Chemical Society),(e): CO2 adsorption-desorption isotherms of H-ZSM-5 NPs, [P6,6,6,14][Br] and H-ZSM-5-liquid/[P6,6,6,14][Br] collected at 298 K, respectively.(Reproduced from Ref. [40] with permission from The Royal Society of Chemistry),(f): CO2 adsorption-desorption isotherms of ZIF-8 porous liquids at ambient temperature.(Reproduced from Ref. [95] with permission from the American Chemical Society)
图7 (a) 多孔液体UiO-66-liquid/[M2070][IPA]构筑原理及气体吸附示意图[41];(b) ZIF-8多孔液体路线[96];(c) CO2 在离子液体[M2070][IPA]及多孔液体UIO-66-liquid/[M2070][IPA]的吸附脱附等温线[41];(d) CO2在离子液体[Bpy][NTf2]及ZIF-8多孔液体的穿透曲线[96]
Fig. 7 (a) Fabrication based on a similar compatibility principle of the MOF-based porous liquid UIO-66-liquid/[M2070][IPA] and the illustration for adsorption of gas molecules.(Reproduced from Ref. [41] with permission from the Royal Society of Chemistry)(b) Synthesis strategy for ZIF-liquid.(Reproduced from Ref. [96] with permission from the American Chemical Society)(c) CO2 adsorption-desorption isotherms of [M2070][IPA] and UIO-66-liquid/[M2070][IPA] at 298 K, respectively.(Reproduced from Ref. [41] with permission from the Royal Society of Chemistry)(d) CO2 adsorption in [Bpy][NTf2](1 mL) and ZIF-8(20 mg) in [Bpy][NTf2](1 mL) at 298 K.(Reproduced from Ref.[96] with permission from the American Chemical Society)
[1]
Bao Z, Xie D, Chang G, Wu H, Li L, Zhou W, Wang H, Zhang Z, Xing H, Yang Q. J. Am. Chem. Soc., 2018, 140: 4596.

doi: 10.1021/jacs.7b13706     URL    
[2]
Li J W, Ren Y W, Jiang H F. Progress in Chemistry, 2019, 31: 1350.
( 李嘉伟, 任颜卫, 江焕峰. 化学进展, 2019, 31: 1350.).

doi: 10.7536/PC190413    
[3]
Mitra T, Jelfs K E, Schmidtmann M, Ahmed A, Chong S Y, Adams D J, Cooper A I. Nat. Chem., 2013, 5(4): 276.

doi: 10.1038/nchem.1550     URL    
[4]
Reiss P S, Little M A, Santolini V, Chong S Y, Hasell T, Jelfs K E, Briggs M E, Cooper A I. Chem. Eur. J., 2016, 22(46): 16547.

doi: 10.1002/chem.201603593     URL    
[5]
Briggs M E, Cooper A I. Chem. Mater., 2017, 29(1): 149.

doi: 10.1021/acs.chemmater.6b02903     URL    
[6]
Lee J H, Lee H J, Lim S Y, Kim B G, Choi J W. J. Am. Chem. Soc., 2015, 137(22): 7210.

doi: 10.1021/jacs.5b03579     URL    
[7]
Haldoupis E, Nair S, Sholl D S. J. Am. Chem. Soc., 2012, 134(9): 4313.

doi: 10.1021/ja2108239     pmid: 22329402
[8]
Wen J, Li Y H, Wang Li, Chen X N, Cao Q, He N P. Progress in Chemistry, 2020, 32: 417.
( 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 化学进展, 2020, 32: 417.).

doi: 10.7536/PC190713    
[9]
Maes M, Alaerts L, Vermoortele F, Ameloot R, Couck S, Finsy V, Denayer J F M, de Vos D E. J. Am. Chem. Soc., 2010, 132(7): 2284.

doi: 10.1021/ja9088378     URL    
[10]
Ning H, Yang Z, Wang D, Meng Z, Li Y, Ju X, Wang C. Micropor. Mesopor. Mat., 2021, 311: 110700.

doi: 10.1016/j.micromeso.2020.110700     URL    
[11]
Liu H, Liu B, Lin L C, Chen G J, Wu Y Q, Wang J, Gao X T, Lv Y, Pan Y, Zhang X X, Zhang X R, Yang L Y, Sun C Y, Smit B, Wang W C. Nat. Commun., 2014, 5(1): 1.
[12]
Pascanu V, González Miera G, Inge A K, Martín-Matute B. J. Am. Chem. Soc., 2019, 141(18): 7223.

doi: 10.1021/jacs.9b00733     pmid: 30974060
[13]
Cao C C, Chen C X, Wei Z W, Qiu Q F, Zhu N X, Xiong Y Y, Jiang J J, Wang D W, Su C Y. J. Am. Chem. Soc., 2019, 141(6): 2589.

doi: 10.1021/jacs.8b12372     pmid: 30645112
[14]
Chen C, Huang Y, Zhu Y D, Zhang Z, Guang Z X, Meng Z Y, Liu P B. ACS Sustainable Chem. Eng., 2020, 8(3): 1497.

doi: 10.1021/acssuschemeng.9b05948     URL    
[15]
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Chem. Soc. Rev., 2016, 45(12): 3479.

doi: 10.1039/C6CS00135A     URL    
[16]
Rabone J, Yue Y F, Chong S Y, Stylianou K C, Bacsa J, Bradshaw D, Darling G R, Berry N G, Khimyak Y Z, Ganin A Y, Wiper P, Claridge J B, Rosseinsky M J. Science, 2010, 329(5995): 1053.

doi: 10.1126/science.1190672     pmid: 20798314
[17]
To J W F, He J J, Mei J G, Haghpanah R, Chen Z, Kurosawa T, Chen S C, Bae W G, Pan L J, Tok J B H, Wilcox J, Bao Z N. J. Am. Chem. Soc., 2016, 138(3): 1001.

doi: 10.1021/jacs.5b11955     URL    
[18]
Kar S, Sen R, Goeppert A, Prakash G K S. J. Am. Chem. Soc., 2018, 140(5): 1580.

doi: 10.1021/jacs.7b12183     URL    
[19]
Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124(6): 926.

doi: 10.1021/ja017593d     URL    
[20]
He S F, Chen L H, Cui J, Yuan B, Wang H L, Wang F, Yu Y, Lee Y, Li T. J. Am. Chem. Soc., 2019, 141(50): 19708.

doi: 10.1021/jacs.9b08458     URL    
[21]
Yousefi R, Struble T J, Payne J L, Vishe M, Schley N D, Johnston J N. J. Am. Chem. Soc., 2019, 141(1): 618.

doi: 10.1021/jacs.8b11793     URL    
[22]
Wang D C, Xin Y Y, Li X Q, Wang F, Wang Y D, Zhang W R, Zheng Y P, Yao D D, Yang Z Y, Lei X F. Chem. Eng. J., 2021, 416: 127625.

doi: 10.1016/j.cej.2020.127625     URL    
[23]
O'Reilly N, Giri N, James S. Chem. Eur. J., 2007, 13(11): 3020.

doi: 10.1002/(ISSN)1521-3765     URL    
[24]
Giri N, del PÓpolo N, Melaugh G, Greenaway R L, Rätzke K, Koschine T, Pison L, Gomes M F C, Cooper A I, James S L. Nature, 2015, 527(7577): 216.

doi: 10.1038/nature16072     URL    
[25]
Gaillac R, Pullumbi P, Beyer K A, Chapman K W, Keen D A, Bennett T D, Coudert F X. Nat. Mater., 2017, 16(11): 1149.

doi: 10.1038/nmat4998     pmid: 29035353
[26]
Lindquist B A, Jadrich R B, Truskett T M. Soft Matter, 2016, 12(10): 2663.

doi: 10.1039/c5sm03068d     pmid: 26883309
[27]
Zhang S G, Dokko K, Watanabe M. Chem. Sci., 2015, 6(7): 3684.

doi: 10.1039/C5SC01374G     URL    
[28]
Cooper A I. ACS Cent. Sci., 2017, 3(6): 544.

doi: 10.1021/acscentsci.7b00146     URL    
[29]
Deng Z, Ying W, Gong K, Zeng Y J, Yan Y G, Peng X S. Small, 2020, 16(11): 1907016.

doi: 10.1002/smll.v16.11     URL    
[30]
Zhang J S, Chai S H, Qiao Z A, Mahurin S M, Chen J H, Fang Y X, Wan S, Nelson K, Zhang P F, Dai S. Angew. Chem. Int. Ed., 2015, 54(3): 932.

doi: 10.1002/anie.201409420     URL    
[31]
Hemming E B, Masters A F, Maschmeyer T. Chem. Commun., 2019, 55(75): 11179.

doi: 10.1039/C9CC03546J     URL    
[32]
Bavykina A, Cadiau A, Gascon J. Coord. Chem. Rev., 2019, 386: 85.

doi: 10.1016/j.ccr.2019.01.015     URL    
[33]
Tuffnell J M, Ashling C W, Hou J W, Li S C, Longley L, Ríos GÓmez M L, Bennett T D. Chem. Commun., 2019, 55(60): 8705.

doi: 10.1039/C9CC01468C     URL    
[34]
Longley L, Collins S M, Zhou C, Smales G J, Norman S E, Brownbill N J, Ashling C W, Chater P A, Tovey R, Schönlieb C B, Headen T F, Terrill N J, Yue Y Z, Smith A J, Blanc F, Keen D A, Midgley P A, Bennett T D. Nat. Commun., 2018, 9(1): 1.
[35]
van de Manakker F, Vermonden T, van Nostrum C F, Hennink W E. Biomacromolecules, 2009, 10(12): 3157.

doi: 10.1021/bm901065f     pmid: 19921854
[36]
Kim K, Selvapalam N, Ko Y H, Park K M, Kim D, Kim J. Chem. Soc. Rev., 2007, 36(2): 267.

doi: 10.1039/B603088M     URL    
[37]
Zhao J Z, Kim H J, Oh J, Kim S Y, Lee J W, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem. Int. Ed., 2001, 40(22): 4233.

doi: 10.1002/1521-3773(20011119)40:22【-逻*辑*与-】#x00026;lt;【-逻*辑*与-】#x00026;gt;1.0.CO;2-D     URL    
[38]
Warmuth R, Yoon J. Acc. Chem. Res., 2001, 34(2): 95.

doi: 10.1021/ar980082k     URL    
[39]
Barbour L J. Chem. Commun., 2006(11): 1163.
[40]
Li P P, Chen H, Schott J A, Li B, Zheng Y P, Mahurin S M, Jiang D E, Cui G K, Hu X X, Wang Y Y, Li L W, Dai S. Nanoscale, 2019, 11(4): 1515.

doi: 10.1039/C8NR07337F     URL    
[41]
Zhao X M, Yuan Y H, Li P P, Song Z, Ma C X, Pan D, Wu S D, Ding T, Guo Z H, Wang N. Chem. Commun., 2019, 55(87): 13179.

doi: 10.1039/C9CC07243H     URL    
[42]
Das S, Heasman P, Ben T, Qiu S L. Chem. Rev., 2017, 117(3): 1515.

doi: 10.1021/acs.chemrev.6b00439     URL    
[43]
Singh G, Lee J, Karakoti A, Bahadur R, Yi J B, Zhao D Y, AlBahily K, Vinu A. Chem. Soc. Rev., 2020, 49(13): 4360.

doi: 10.1039/D0CS00075B     URL    
[44]
Li Y. ChemistrySelect, 2020, 5: 13664.

doi: 10.1002/slct.v5.43     URL    
[45]
Yang Q W, Xing H B, Bao Z B, Su B G, Zhang Z G, Yang Y W, Dai S, Ren Q L. J. Phys. Chem. B, 2014, 118(13): 3682.

doi: 10.1021/jp500790r     URL    
[46]
Ke Y Q, Jin W B, Yang Q W, Suo X, Yang Y W, Ren Q L, Xing H B. ACS Sustainable Chem. Eng., 2018, 6(7): 8983.

doi: 10.1021/acssuschemeng.8b01353     URL    
[47]
Dong K, Liu X M, Dong H F, Zhang X P, Zhang S J. Chem. Rev., 2017, 117(10): 6636.

doi: 10.1021/acs.chemrev.6b00776     pmid: 28488441
[48]
Li P P, Shi T, Yao D D, Wang Y D, Liu C, Zheng Y P. Carbon, 2016, 110: 87.

doi: 10.1016/j.carbon.2016.09.004     URL    
[49]
Bai H P, Zheng Y P, Wang T, Peng N K. J. Mater. Chem. A, 2016, 4(37): 14392.

doi: 10.1039/C6TA07025F     URL    
[50]
Wang D C, Song S, Zhang W R, He Z J, Wang Y D, Zheng Y P, Yao D D, Pan Y T, Yang Z Y, Meng Z Y, Li Y Y. Sep. Purif. Technol., 2020, 241: 116708.

doi: 10.1016/j.seppur.2020.116708     URL    
[51]
Giri N, Davidson C E, Melaugh G, del PÓpolo M G, Jones J T A, Hasell T, Cooper A I, Horton P N, Hursthouse M B, James S L. Chem. Sci., 2012, 3(6): 2153.

doi: 10.1039/c2sc01007k     URL    
[52]
Melaugh G, Giri N, Davidson C E, James S L, del PÓpolo M G. Phys. Chem. Chem. Phys., 2014, 16(20): 9422.

doi: 10.1039/c4cp00582a     pmid: 24722729
[53]
Jie K C, Onishi N, Schott J A, Popovs I, Jiang D E, Mahurin S, Dai S. Angew. Chem. Int. Ed., 2020, 59(6): 2268.

doi: 10.1002/anie.v59.6     URL    
[54]
Li P P, Schott J A, Zhang J S, Mahurin S M, Sheng Y J, Qiao Z A, Hu X X, Cui G K, Yao D D, Brown S, Zheng Y P, Dai S. Angew. Chem., 2017, 129(47): 15154.

doi: 10.1002/ange.v129.47     URL    
[55]
Shi T, Zheng Y P, Wang T, Li P P, Wang Y D, Yao D D. ChemPhysChem, 2018, 19(1): 130.

doi: 10.1002/cphc.v19.1     URL    
[56]
Bourlinos A B, Ray Chowdhury S, Herrera R, Jiang D D, Zhang Q, Archer L A, Giannelis E P. Adv. Funct. Mater., 2005, 15(8): 1285.

doi: 10.1002/(ISSN)1616-3028     URL    
[57]
Bourlinos A B, Herrera R, Chalkias N, Jiang D D, Zhang Q, Archer L A, Giannelis E P. Adv. Mater., 2005, 17(2): 234.

doi: 10.1002/(ISSN)1521-4095     URL    
[58]
Zhang Z Z, Zhang J X, Li S Y, Liu J P, Dong M Y, Li Y C, Lu N, Lei S Y, Tang J J, Fan J C, Guo Z H. Compos. B: Eng., 2019, 176: 107338.

doi: 10.1016/j.compositesb.2019.107338     URL    
[59]
Lin K Y A, Petit C, Park A H A. Energy Fuels, 2013, 27(8): 4167.

doi: 10.1021/ef400374q     URL    
[60]
Lin K Y A, Park A H A. Environ. Sci. Technol., 2011, 45(15): 6633.

doi: 10.1021/es200146g     URL    
[61]
Petit C, Lin K Y A, Park A H A. Langmuir, 2013, 29(39): 12234.

doi: 10.1021/la4007923     URL    
[62]
Zhang J X, Li P P, Zhang Z Z, Wang X J, Tang J J, Liu H, Shao Q, Ding T, Umar A, Guo Z H. J. Colloid Interface Sci., 2019, 542: 159.

doi: 10.1016/j.jcis.2019.01.135     URL    
[63]
Zhang J X, Zheng Y P, Lan L, Mo S, Yu P Y, Shi W, Wang R M. ACS Nano, 2009, 3(8): 2185.

doi: 10.1021/nn900557y     URL    
[64]
Wang D C, Zheng Y P, Yao D D, Yang Z Y, Xin Y Y, Wang F, Wang Y D, Ning H L, Wu H, Wang H N. New J. Chem., 2019, 43(30): 11949.

doi: 10.1039/C9NJ02789K     URL    
[65]
Yang Z, Wang D, Meng Z, Li Y. Sep. Purif. Technol., 2019, 218: 130.

doi: 10.1016/j.seppur.2019.02.048     URL    
[66]
Wang D C, Yao D D, Wang Y D, Wang F, Xin Y Y, Song S, Zhang Z L, Su F F, Zheng Y P. Sep. Purif. Technol., 2019, 221: 421.

doi: 10.1016/j.seppur.2019.04.005     URL    
[67]
Li Y L, Duan Z B, Huo T, Zhu L J, Xiang Y Z, Xia D H. Chem. Ind. Eng. Prog., 2017, 36(4): 1342.
( 李彦霖, 段尊斌, 霍添, 朱丽君, 项玉芝, 夏道宏. 化工进展, 2017, 36(4): 1342.)
[68]
Li X Q, Ding Y D, Liao Q, Zhu X, Li H, Wang H. Chemical Industry and Engineering Progress, 2017, 36: 3362.
( 李晓强, 丁玉栋, 廖强, 朱恂, 李恒, 王宏. 化工进展, 2017, 36: 3362.).
[69]
Kumar R, Dhasaiyan P, Naveenkumar P M, Sharma K P. Nanoscale Adv., 2019, 1(10): 4067.

doi: 10.1039/C9NA00353C     URL    
[70]
Sheng L S, Chen Z Q. Chinese Journal of Chemical Engineering, 2019, 70: 1163.
( 生丽莎, 陈振乾. 化工学报, 2019, 70: 1163.).
[71]
Zhao X R, An S H, Dai J L, Peng C J, Hu J, Liu H L. New J. Chem., 2020, 44(29): 12715.

doi: 10.1039/D0NJ02388D     URL    
[72]
Zhang F, Yang F C, Huang J S, Sumpter B G, Qiao R. J. Phys. Chem. B, 2016, 120(29): 7195.

doi: 10.1021/acs.jpcb.6b04784     URL    
[73]
Julien P A, Užarević K, Katsenis A D, Kimber S A J, Wang T, Farha O K, Zhang Y C, Casaban J, Germann L S, Etter M, Dinnebier R E, James S L, Halasz I, Frišić T. J. Am. Chem. Soc., 2016, 138(9): 2929.

doi: 10.1021/jacs.5b13038     URL    
[74]
James S L. Adv. Mater., 2016, 28(27): 5712.

doi: 10.1002/adma.v28.27     URL    
[75]
Crawford D, Casaban J, Haydon R, Giri N, McNally T, James S L. Chem. Sci., 2015, 6(3): 1645.

doi: 10.1039/c4sc03217a     pmid: 29308131
[76]
Lee J S M, Cooper A I. Chem. Rev., 2020, 120(4): 2171.
[77]
Little M A, Cooper A I. Adv. Funct. Mater., 2020, 30(41): 1909842.

doi: 10.1002/adfm.v30.41     URL    
[78]
Greenaway R L, Santolini V, Pulido A, Little M A, Alston B M, Briggs M E, Day G M, Cooper A I, Jelfs K E. Angew. Chem. Int. Ed. Engl., 2019, 58: 16275.

doi: 10.1002/anie.v58.45     URL    
[79]
Liu M, Zhang L, Little M A, Kapil V, Ceriotti M, Yang S, Ding L, Holden D, Balderasxicohtencatl R, He D. Science, 2019, 366: 613.

doi: 10.1126/science.aax7427     URL    
[80]
Greenaway R L, Holden D, Eden E G B, Stephenson A, Yong C W, Bennison M J, Hasell T, Briggs M E, James S L, Cooper A I. Chem. Sci., 2017, 8(4): 2640.

doi: 10.1039/c6sc05196k     pmid: 28553499
[81]
Kearsey R J, Alston B M, Briggs M E, Greenaway R L, Cooper A I. Chem. Sci., 2019, 10(41): 9454.

doi: 10.1039/c9sc03316e     pmid: 32110304
[82]
Egleston B, Luzyanin K, Brand M, Clowes R, Briggs M, Greenaway R L, Cooper A. Angew. Chem. Int. Ed. Engl., 2020. 10.1002/anie.201914037.
[83]
Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131(25): 8875.

doi: 10.1021/ja9015765     URL    
[84]
Diercks C S, Lin S, Kornienko N, Kapustin E A, Nichols E M, Zhu C H, Zhao Y B, Chang C J, Yaghi O M. J. Am. Chem. Soc., 2018, 140(3): 1116.

doi: 10.1021/jacs.7b11940     URL    
[85]
Lin G Q, Ding H M, Chen R F, Peng Z K, Wang B S, Wang C. J. Am. Chem. Soc., 2017, 139(25): 8705.

doi: 10.1021/jacs.7b04141     URL    
[86]
Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc., 2019, 141(5): 1807.

doi: 10.1021/jacs.8b10334     pmid: 30485740
[87]
Wang H L, He S F, Qin X D, Li C E, Li T. J. Am. Chem. Soc., 2018, 140(49): 17203.

doi: 10.1021/jacs.8b10138     URL    
[88]
He S F, Wang H L, Zhang C Z, Zhang S W, Yu Y, Lee Y, Li T. Chem. Sci., 2019, 10(6): 1816.

doi: 10.1039/C8SC03520B     URL    
[89]
Maiti U N, Lee W J, Lee J M, Oh Y, Kim J Y, Kim J E, Shim J, Han T H, Kim S O. Adv. Mater., 2014, 26(1): 40.

doi: 10.1002/adma.201303265     URL    
[90]
Li Q, Dong L J, Fang J F, Xiong C X. ACS Nano, 2010, 4(10): 5797.

doi: 10.1021/nn101542v     URL    
[91]
Ding Y X, Sun X Y, Zhang L Y, Mao S J, Xie Z L, Liu Z W, Su D S. Angew. Chem. Int. Ed., 2015, 54(1): 231.

doi: 10.1002/anie.v54.1     URL    
[92]
Ding Y X, Su D S. ChemSusChem, 2014, 7(6): 1542.

doi: 10.1002/cssc.201301226     URL    
[93]
Yang Z Y, Ning H L, Liu J P, Meng Z Y, Li Y Y, Ju X Q, Chen Z P. Chem. Eng. Res. Des., 2020, 161: 312.

doi: 10.1016/j.cherd.2020.07.025     URL    
[94]
Meng Z Y, Yang Z Y, Yin Z Q, Li Y Y, Song X Y, Zhao J J, Wu W L. Powder Technol., 2020, 359: 261.

doi: 10.1016/j.powtec.2019.09.053     URL    
[95]
Shan W D, Fulvio P F, Kong L Y, Schott J A, Do-Thanh C L, Tian T, Hu X X, Mahurin S M, Xing H B, Dai S. ACS Appl. Mater. Interfaces, 2018, 10(1): 32.

doi: 10.1021/acsami.7b15873     URL    
[96]
Liu S J, Liu J D, Hou X D, Xu T T, Tong J, Zhang J X, Ye B J, Liu B. Langmuir, 2018, 34(12): 3654.

doi: 10.1021/acs.langmuir.7b04212     URL    
[97]
Costa Gomes M, Pison L, Červinka C, Padua A. Angew. Chem. Int. Ed., 2018, 57(37): 11909.

doi: 10.1002/anie.201805495     URL    
[98]
Peh S B, Wang Y X, Zhao D. ACS Sustainable Chem. Eng., 2019, 7(4): 3647.
[99]
Kang Z X, Peng Y W, Qian Y H, Yuan D Q, Addicoat M A, Heine T, Hu Z G, Tee L, Guo Z G, Zhao D. Chem. Mater., 2016, 28(5): 1277.

doi: 10.1021/acs.chemmater.5b02902     URL    
[100]
Ying Y P, Tong M M, Ning S C, Ravi S K, Peh S B, Tan S C, Pennycook S J, Zhao D. J. Am. Chem. Soc., 2020, 142(9): 4472.

doi: 10.1021/jacs.9b13825     URL    
[101]
Wang Y X, Hu Z G, Kundu T, Cheng Y D, Dong J Q, Qian Y H, Zhai L Z, Zhao D. ACS Sustainable Chem. Eng., 2018, 6(9): 11904.

doi: 10.1021/acssuschemeng.8b02173     URL    
[102]
Liu G L, Yuan Y D, Wang J, Cheng Y D, Peh S B, Wang Y X, Qian Y H, Dong J Q, Yuan D Q, Zhao D. J. Am. Chem. Soc., 2018, 140(20): 6231.

doi: 10.1021/jacs.8b03517     URL    
[103]
Lan J H, Cao D P, Wang W C, Smit B. ACS Nano, 2010, 4(7): 4225.

doi: 10.1021/nn100962r     URL    
[104]
Yang W B, Greenaway A, Lin X, Matsuda R, Blake A J, Wilson C, Lewis W, Hubberstey P, Kitagawa S, Champness N R, Schröder M. J. Am. Chem. Soc., 2010, 132(41): 14457.

doi: 10.1021/ja1042935     URL    
[105]
Chen C, Huang Y, Meng Z Y, Xu Z P, Liu P B, Li T H. J. Energy Chem., 2021, 54: 482.

doi: 10.1016/j.jechem.2020.06.025     URL    
[1] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[2] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[3] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[4] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[5] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[6] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[7] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[8] 高凤凤, 杨言言, 杜晓, 郝晓刚, 官国清, 汤兵. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351.
[9] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[10] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[11] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[12] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[13] 王贺礼, 朱美华, 梁丽, 吴婷, 张飞, 陈祥树. SSZ-13分子筛膜的制备方法及其气体分离[J]. 化学进展, 2020, 32(4): 423-433.
[14] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.
[15] 刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 计算模拟研究金属有机骨架材料吸附分离C2、C3烃类气体[J]. 化学进展, 2020, 32(1): 133-144.