English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1841-1855 DOI: 10.7536/PC200862 前一篇   后一篇

• 综述 •

聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用

谭莎1,2, 马建中1,2,*(), 宗延1,2,*()   

  1. 1 陕西科技大学轻工科学与工程学院 西安 710021
    2 西安市绿色化学品与功能材料重点实验室 西安 710021
  • 收稿日期:2020-08-24 修回日期:2020-10-23 出版日期:2021-10-20 发布日期:2020-12-28
  • 通讯作者: 马建中, 宗延
  • 基金资助:
    国家重点研发计划(2017YFB0308602); 国家自然科学基金项目(51903143)

Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites

Sha Tan1,2, Jianzhong Ma1,2(), Yan Zong1,2()   

  1. 1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
    2 Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
  • Received:2020-08-24 Revised:2020-10-23 Online:2021-10-20 Published:2020-12-28
  • Contact: Jianzhong Ma, Yan Zong
  • Supported by:
    National Key Research and Development Program of China(2017YFB0308602); National Natural Science Foundation of China(51903143)

聚(3,4-乙烯二氧噻吩)∶聚(苯乙烯磺酸)(PEDOT∶PSS)是一种水溶性导电高分子体系,具有易加工、高透光率及柔韧性等优点,但其应用范围仅限于作为电子器件的柔性电极材料。为了进一步扩大PEDOT∶PSS的应用范围,将无机纳米材料引入该体系实现材料的多功能化是较为有效的方法。本文首先介绍了PEDOT∶PSS/无机纳米复合材料最常用的四种制备方法,即原位法、共混法、自组装法、插层复合法,分别介绍了每种制备方法的原理和特点,并阐述了研究人员对复合材料的结构设计思路及引入的无机相对材料性能的影响。随后,综述了PEDOT∶PSS/无机纳米复合材料在传感器、太阳能电池、超级电容器、热电发电机等领域中应用的最新进展。最后指出了目前在PEDOT∶PSS/无机纳米复合材料的研究中面临的挑战,并对该材料的研究方向和发展趋势进行了展望。

The complex of poly(3,4-ethylenedioxythiophene)∶poly(4-styrenesulfonate)(PEDOT∶PSS) is a water-soluble conducting polymer system with many advantages such as easy processability, high transmittance and flexibility. Its application, however, is only limited as flexible electrode material in some electronic devices. To solve this, introducing inorganic nanomaterials into PEDOT∶PSS complex to realize multifunctional materials is a relatively effective method to further expand its application. In this review, four most commonly used strategies to prepare PEDOT∶PSS/inorganic nanocomposites, including in-situ method, blending method, self-assembly method and intercalation method are summarized at first. Following this, each of the methods is detailed with their mechanism and experimental features, and the structural design of the nanocomposites as well as the structure-property relationships that affected by introduced inorganic nanofillers are also elucidated. Then the latest research progress of applications in sensors, solar cells, supercapacitors, thermoelectric generators of PEDOT∶PSS/inorganic nanocomposites are reviewed. Finally, the existing challenges in PEDOT∶PSS/inorganic nanocomposites studies are pointed out, and the future perspectives are provided for the research direction and potential progress and trends of these materials.

Contents

1 Introduction

2 Preparation of PEDOT∶PSS/inorganic nanocomposites

2.1 In-situ method

2.2 Blending method

2.3 Self-assembly method

2.4 Intercalation preparation method

3 Applications of PEDOT∶PSS/inorganic nanocomposites

3.1 Sensors

3.2 Solar cells

3.3 Supercapacitors

3.4 Thermoelectric generators

3.5 Other applications

4 Conclusion and outlook

()
图式1 PEDOT∶PSS的化学结构
Scheme 1 Chemical structure of PEDOT∶PSS
图1 PEDOT∶PSS包覆Cu7Te4/PEDOT∶PSS包覆Te复合薄膜的制备示意图[38]
Fig. 1 Schematic of the fabrication of the PEDOT∶PSS-coated Cu7Te4/PEDOT∶PSS-coated Te composite film. Reprinted with permission from [38]. Copyright 2018, American Chemical Society
图2 PEDOT∶PSS/石墨烯/MWCNTs复合材料的直接原位合成示意图[55]
Fig. 2 Synthetic scheme of direct in-situ synthesis of PEDOT∶PSS/graphene/MWCNTs composites. Reprinted with permission from [55]. Copyright 2013, Royal Society of Chemistry
图3 PEDOT∶PSS/Au纳米复合材料的制备示意图[57]
Fig. 3 Schematic of the preparation of PEDOT∶PSS/Au nanocomposites. Reproduced from reference [57]. Copyright 2007, American Chemical Society
图4 (a)Ag/PEDOT∶PSS复合界面制备示意图;(b)X射线光电子能谱((a)纯PEDOT∶PSS和(b)Ag/PEDOT∶PSS);(c)透射光谱;(d)纯PEDOT∶PSS薄膜和Ag/PEDOT∶PSS薄膜的紫外光电子能谱图;(e)带有ITO/PEDOT∶PSS或Ag/PEDOT∶PSS/Ag结构的装置在暗处的log(J)-log(V)表征。所有复合膜掺杂Ag的体积百分比为5%[81]
Fig. 4 (a) Schematic of the preparation of Ag/PEDOT∶PSS composite interface;(b) X-ray photoelectron spectroscopy(XPS)((a) pristine PEDOT∶PSS and(b) Ag/PEDOT∶PSS);(c) transmittance spectra; and(d) ultraviolet photoelectron spectroscopy(UPS) images of pristine PEDOT∶PSS and Ag/PEDOT∶PSS films;(e) log(J)-log(V) characterization of the device with a structure of ITO/PEDOT∶PSS or Ag/PEDOT∶PSS/Ag in the dark. The doping content of Ag is 5% in volume ratio for all of the composite films. Reprinted with permission from [81]. Copyright 2019, American Chemical Society
图5 单层Co-Ni LDH和PEDOT∶PSS组装示意图[92]
Fig. 5 Schematic of the assembly of CoNi LDH monolayers and PEDOT∶PSS[92]. Copyright 2015, John Wiley & Sons
图6 PEDOT∶PSS/氧化铁纳米复合薄膜转移到不同衬底上:(a)PVA支撑层溶解后漂浮在水上的含5 mg/mL氧化铁纳米粒子的无支撑PEDOT∶PSS/氧化铁纳米薄膜(2 cm×1 cm);(b)钢丝网上的含1 mg/mL氧化铁纳米粒子的PEDOT∶PSS/氧化铁纳米薄膜的SEM照片(比例尺为100 μm);(c)在聚四氟乙烯螺钉上;(d)在纸上;(e)在塑料管上;(f)在柔性PDMS上,(g)在纸上收集的纳米薄膜边缘的SEM照片,显示了纳米薄膜符合纸纤维结构(比例尺为50 μm)[110]
Fig.6 PEDOT∶PSS/iron oxide composite nanofilms transferred to various substrates:(a) freestanding PEDOT∶PSS/NP5 nanofilm(2 cm×1 cm) floating in water after PVA dissolving.(b) SEM micrographs showing PEDOT∶PSS/NP1 nanofilm collected onto a steel mesh(scale bar: 100 μm). Nanofilms collected onto(c) Teflon screw,(d) paper,(e) plastic tube, and(f) flexible PDMS. In(g), an SEM picture of the edge of ananofilm collected on paper showing the paper fiber structure to which the nanofilm conforms(scale bar: 50 μm). Reprinted with permission from [110]. Copyright 2013, American Chemical Society
图7 倒置平面钙钛矿太阳能电池的结构示意图[120]
Fig. 7 Inverted planar perovskite solar cell[120]
图8 制备RuO2/PEDOT∶PSS/石墨烯丝网印刷电极的步骤和丝网印刷电极的数码相机图[123]
Fig. 8 Overall procedure for fabricating RuO2/PEDOT∶PSS/graphene screen-printed electrode and digital camera image of screen-printed electrode. Reprinted with permission from [123]. Copyright 2015, American Chemical Society
图9 杂化热电材料和热电装置的制备示意图:步骤(1),一锅原位合成PEDOT∶PSS/Bi2Te3杂化纳米线;步骤(2),纳米线嵌入PEDOT∶PSS纳米膜作为热电性能测试样品的自组装三维网络结构的制备;步骤(3),用于大规模的低温能量采集的热电绝缘管装置的制备[138]
Fig. 9 Schematic showing the processing steps of the hybrid TE material and device: step(1), one-pot synthesis of the in situ PEDOT∶PSS/Bi2Te3 hybrid nanowire; step(2), fabrication of the self-assembled 3D network of nanowire-embedded PEDOT∶PSS nanofilms as TE test specimen; and step(3), construction of the insulator-pipeline TE device for large-scale deployment of low-temperature energetic harvesting. Reprinted with permission from [138]. Copyright 2019, American Chemical Society
[1]
Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J. J. Chem. Soc., Chem. Commun., 1977(16): 578.
[2]
Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A. Nat. Rev. Mater., 2016, 1(10): 1.
[3]
Du Y, Shen S Z, Cai K F, Casey P S. Prog. Polym. Sci., 2012, 37(6): 820.

doi: 10.1016/j.progpolymsci.2011.11.003     URL    
[4]
Song H J, Cai K F. Energy, 2017, 125: 519.

doi: 10.1016/j.energy.2017.01.037     URL    
[5]
Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Nat. Mater., 2011, 10(6): 429.

doi: 10.1038/nmat3012     pmid: 21532583
[6]
Wang J, Cai K F, Yin J L, Shen S. Synth. Met., 2017, 224: 27.

doi: 10.1016/j.synthmet.2016.11.031     URL    
[7]
Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds J R. Adv. Mater., 2000, 12(7): 481.

doi: 10.1002/(ISSN)1521-4095     URL    
[8]
Vosgueritchian M, Lipomi D J, Bao Z N. Adv. Funct. Mater., 2012, 22(2): 421.

doi: 10.1002/adfm.201101775     URL    
[9]
Xia Y J, Sun K, Ouyang J Y. Adv. Mater., 2012, 24(18): 2436.

doi: 10.1002/adma.201104795     URL    
[10]
Xu Y F, Wang Y, Liang J J, Huang Y, Ma Y F, Wan X J, Chen Y S. Nano Res., 2009, 2(4): 343.

doi: 10.1007/s12274-009-9032-9     URL    
[11]
Strakosas X, Sessolo M, Hama A, Rivnay J, Stavrinidou E, Malliaras G G, Owens R M. J. Mater. Chem. B, 2014, 2(17): 2537.

doi: 10.1039/c3tb21491e     pmid: 32261421
[12]
Zhu Z Y, Song H J, Xu J K, Liu C C, Jiang Q L, Shi H. J. Mater. Sci.: Mater. Electron., 2015, 26(1): 429.

doi: 10.1007/BF00576538     URL    
[13]
Park T, Park C, Kim B, Shin H, Kim E. Energy Environ. Sci., 2013, 6(3): 788.

doi: 10.1039/c3ee23729j     URL    
[14]
Taggart D K, Yang Y, Kung S C, McIntire T M, Penner R M. Nano Lett., 2011, 11(1): 125.

doi: 10.1021/nl103003d     pmid: 21133353
[15]
Wen Y P, Xu J K. J. Polym. Sci. Part A: Polym. Chem., 2017, 55(7): 1121.

doi: 10.1002/pola.v55.7     URL    
[16]
Wang J C, Karmakar R S, Lu Y J, Chan S H, Wu M C, Lin K J, Chen C K, Wei K C, Hsu Y H. ACS Appl. Mater. Interfaces, 2019, 11(37): 34305.

doi: 10.1021/acsami.9b10575     URL    
[17]
Yu Y Y, Peng S H, Blanloeuil P, Wu S Y, Wang C H. ACS Appl. Mater. Interfaces, 2020, 12(32): 36578.

doi: 10.1021/acsami.0c07649     URL    
[18]
Ikeda N, Koganezawa T, Kajiya D, Saitow K I. J. Phys. Chem. C, 2016, 120(34): 19043.

doi: 10.1021/acs.jpcc.6b07101     URL    
[19]
Liang Z M, Su M Z, Wang H, Gong Y T, Xie F Y, Gong L, Meng H, Liu P Y, Chen H J, Xie W G, Chen J. ACS Appl. Mater. Interfaces, 2015, 7(10): 5830.

doi: 10.1021/am508879b     URL    
[20]
Yang Z H, Gao P Q, He J, Chen W C, Yin W Y, Zeng Y H, Guo W, Ye J C, Cui Y. ACS Energy Lett., 2017, 2(3): 556.

doi: 10.1021/acsenergylett.7b00015     URL    
[21]
Zhang C F, Higgins T M, Park S H, O'Brien S E, Long D H, Coleman J N, Nicolosi V. Nano Energy, 2016, 28: 495.

doi: 10.1016/j.nanoen.2016.08.052     URL    
[22]
Qin L Q, Tao Q Z, El Ghazaly A, Fernandez-Rodriguez J, Persson P O Å, Rosen J, Zhang F L. Adv. Funct. Mater., 2018, 28(2): 1703808.

doi: 10.1002/adfm.v28.2     URL    
[23]
Lu J X, Feng W J, Mei G D, Sun J Y, Yan C Z, Zhang D, Lin K B, Wu D, Wang K, Wei Z H. Adv. Sci., 2020, 7(11): 2000689.

doi: 10.1002/advs.v7.11     URL    
[24]
Beduk T, Bihar E, Surya S G, Castillo A N, Inal S, Salama K N. Sens. Actuat. B: Chem., 2020, 306: 127539.

doi: 10.1016/j.snb.2019.127539     URL    
[25]
Zhan C X, Yu G Q, Lu Y, Wang L Y, Wujcik E, Wei S Y. J. Mater. Chem. C, 2017, 5(7): 1569.
[26]
Wei Y H, Li J J, Sun X J, Zhao L J. Chin. Plast. Ind., 2016, 44(8): 1.
( 魏燕红, 李娟娟, 孙希静, 赵丽娟. 塑料工业, 2016, 44(8): 1.)
[27]
Li J. Polym. Mater. Sci. Eng., 2013, 29(11): 173.
( 李蛟. 高分子材料科学与工程, 2013, 29(11): 173.)
[28]
Li S W, Xia S W, Liu L, Xu Y Y, Qin Q Y. Chem. Enterp. Manag., 2016(29): 88.
( 李斯文, 夏思文, 刘璐, 徐洋洋, 秦琪颖. 化工管理, 2016(29): 88.)
[29]
Zhang W N, Chen S, Xu J K. J. Jiangxi Sci. Technol. Norm. Univ., 2016(6): 43.
( 张文娜, 陈帅, 徐景坤. 江西科技师范大学学报, 2016(6): 43.)
[30]
Zhang J L, Li J, Liu J C. Mater. Rev., 2010, 24(19): 136.
( 张金玲, 李蛟, 刘俊成. 材料导报, 2010, 24(19): 136.)
[31]
Xu D, Shen H J, Yuan H H, Wang W, Xie J J, Prog. Chem., 2018, 30(2/3): 252.
( 许頔, 沈沪江, 袁慧慧, 王炜, 解俊杰. 化学进展, 2018, 30(2/3): 252.)

doi: 10.7536/PC170813    
[32]
Yang L, Cheng T, Zeng W J, Lai W Y, Huang W. Prog. Chem., 2015, 27(11): 1615.

doi: 10.7536/PC150505    
( 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 化学进展, 2015, 27(11): 1615.)

doi: 10.7536/PC150505    
[33]
Woo S, Lee S J, Kim D H, Kim H, Kim Y. Electrochimica Acta, 2014, 116: 518.

doi: 10.1016/j.electacta.2013.10.210     URL    
[34]
Woo S, Jeong J H, Lyu H K, Han Y S, Kim Y. Nanoscale Res. Lett., 2012, 7(1): 1.
[35]
Koebel M M, Jones L C, Somorjai G A. J. Nanoparticle Res., 2008, 10(6): 1063.

doi: 10.1007/s11051-008-9370-7     URL    
[36]
Hu X G, Wang T, Dong S J. J. Nanosci. Nanotech., 2006, 6(7): 2056.

doi: 10.1166/jnn.2006.351     URL    
[37]
Moreno K J, Moggio I, Arias E, Llarena I, Moya S E, Ziolo R F, Barrientos H. J. Nanosci. Nanotech., 2009, 9(6): 3987.

doi: 10.1166/jnn.2009.215     URL    
[38]
Lu Y, Qiu Y, Jiang Q L, Cai K F, Du Y, Song H J, Gao M Y, Huang C J, He J Q, Hu D H. ACS Appl. Mater. Interfaces, 2018, 10(49): 42310.

doi: 10.1021/acsami.8b15252     URL    
[39]
Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3): 183.

pmid: 17330084
[40]
Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438(7065): 201.

doi: 10.1038/nature04235     URL    
[41]
Wang X, Zhi L J, Müllen K. Nano Lett., 2008, 8(1): 323.

doi: 10.1021/nl072838r     URL    
[42]
Yin Z Y, Wu S X, Zhou X Z, Huang X, Zhang Q C, Boey F, Zhang H. Small, 2010, 6(2): 307.

doi: 10.1002/smll.v6:2     URL    
[43]
Xia J L, Chen F, Li J H, Tao N J. Nat. Nanotechnol., 2009, 4(8): 505.

doi: 10.1038/nnano.2009.177     URL    
[44]
Chang H X, Tang L H, Wang Y, Jiang J H, Li J H. Anal. Chem., 2010, 82(6): 2341.
[45]
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230): 706.

doi: 10.1038/nature07719     URL    
[46]
Wu J B, Agrawal M, Becerril H A, Bao Z N, Liu Z F, Chen Y S, Peumans P. ACS Nano, 2010, 4(1): 43.

doi: 10.1021/nn900728d     URL    
[47]
Yoo D, Kim J, Kim J H. Nano Res., 2014, 7(5): 717.

doi: 10.1007/s12274-014-0433-z     URL    
[48]
Lee S, Eom T, Kim M K, Yang S G, Shim B S. Electrochimica Acta, 2019, 313: 79.
[49]
Baruah B, Kumar A, Umapathy G R, Ojha S. J. Electroanal. Chem., 2019, 840: 35.
[50]
Kim D, Kim Y, Choi K, Grunlan J C, Yu C. ACS Nano, 2010, 4(1): 513.

doi: 10.1021/nn9013577     URL    
[51]
Yu C, Choi K, Yin L, Grunlan J C. ACS Nano, 2011, 5(10): 7885.

doi: 10.1021/nn202868a     URL    
[52]
Moriarty G P, De S, King P J, Khan U, Via M, King J A, Coleman J N, Grunlan J C. J. Polym. Sci. B Polym. Phys., 2013, 51(2): 119.

doi: 10.1002/polb.23186     URL    
[53]
Song H J, Liu C C, Xu J K, Jiang Q L, Shi H. RSC Adv., 2013, 3(44): 22065.

doi: 10.1039/c3ra42414f     URL    
[54]
Zhang Z, Chen G M, Wang H F, Li X. Chem. Asian J., 2015, 10(1): 149.

doi: 10.1002/asia.201403100     URL    
[55]
Yoo D, Kim J, Lee S H, Cho W, Choi H H, Kim F S, Kim J H. J. Mater. Chem. A, 2015, 3(12): 6526.

doi: 10.1039/C4TA06710J     URL    
[56]
Shipway A N, Katz E, Willner I. ChemPhysChem, 2000, 1(1): 1.

doi: 10.1002/(ISSN)1439-7641     URL    
[57]
Kumar S S, Kumar C S, Mathiyarasu J, Phani K L. Langmuir, 2007, 23(6): 3401.

doi: 10.1021/la063150h     URL    
[58]
Wang Y, Pang F F, Liu D D, Han G Z. Synth. Met., 2017, 230: 1.

doi: 10.1016/j.synthmet.2017.05.011     URL    
[59]
Cai Y K, Chen C, Pang F F, Geng X, Han G Z. Chin. J. Inorg. Chem., 2014, 30(6): 1339.

doi: 10.1002/cjoc.201200196     URL    
[60]
Wang B, Wilkes G L, Hedrick J C, Liptak S C, McGrath J E. Macromolecules, 1991, 24(11): 3449.

doi: 10.1021/ma00011a063     URL    
[61]
Schubert U, Huesing N, Lorenz A. Chem. Mater., 1995, 7(11): 2010.

doi: 10.1021/cm00059a007     URL    
[62]
Liu Y H, Ma J Z, Bao Y, Liu J L. China Leather, 2012, 41(23): 1.
( 刘易弘, 马建中, 鲍艳, 刘俊莉. 中国皮革, 2012, 41(23): 1.)
[63]
Wu D D, Bao Y, Ma J Z, Tian W L. J. Chin. Ceram. Soc., 2016, 44(5): 720.
( 吴朵朵, 鲍艳, 马建中, 田万乐. 硅酸盐学报, 2016, 44(5): 720.)
[64]
Bao Y, Yang Y Q, Ma J Z. J. Colloid Interface Sci., 2013, 407: 155.

doi: 10.1016/j.jcis.2013.06.045     URL    
[65]
Ma J Z, Zhang W B, Gao D G, Chen C, Wang G. Polym. Mater. Sci. Eng., 2012, 28(12): 59.
( 马建中, 张文博, 高党鸽, 陈琛, 王刚. 高分子材料科学与工程, 2012, 28(12): 59.)
[66]
Lu J L, Song H, Li S N, Wang L, Han L, Ling H, Lu X H. Thin Solid Films, 2015, 584: 353.

doi: 10.1016/j.tsf.2014.12.008     URL    
[67]
Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Prog. Polym. Sci., 2013, 38(8): 1232.

doi: 10.1016/j.progpolymsci.2013.02.003     URL    
[68]
Song N, Hou X S, Cui S Q, Ba C Q, Jiao D J, Ding P, Shi L Y. Polym. Eng. Sci., 2017, 57(4): 374.

doi: 10.1002/pen.v57.4     URL    
[69]
Abbasian M, Pakzad M, Amirmanesh M. Polym. Compos., 2017, 38(6): 1127.

doi: 10.1002/pc.v38.6     URL    
[70]
Du Y, Shi Y L, Meng Q F, Shen S Z. Synth. Met., 2020, 261: 116318.

doi: 10.1016/j.synthmet.2020.116318     URL    
[71]
Jiang Q L, Lan X Q, Liu C C, Shi H, Zhu Z Y, Zhao F, Xu J K, Jiang F X. Mater. Chem. Front., 2018, 2(4): 679.

doi: 10.1039/C7QM00515F     URL    
[72]
Kim J Y, Lee W, Kang Y H, Cho S Y, Jang K S. Carbon, 2018, 133: 293.

doi: 10.1016/j.carbon.2018.03.041     URL    
[73]
Liu S Q, Li H, He C B. Carbon, 2019, 149: 25.

doi: 10.1016/j.carbon.2019.04.007     URL    
[74]
Benchirouf A, Palaniyappan S, Ramalingame R, Raghunandan P, Jagemann T, Müller C, Hietschold M, Kanoun O. Sens. Actuat. B: Chem., 2016, 224: 344.

doi: 10.1016/j.snb.2015.10.009     URL    
[75]
Qi X, Miao T T, Chi C, Zhang G, Zhang C, Du Y Z, An M, Ma W G, Zhang X. Nano Energy, 2020, 77: 105096.
[76]
Zhou Y M, Mei S J, Feng J J, Sun D W, Mei F, Xu J X, Cao X N. RSC Adv., 2020, 10(44): 26381.

doi: 10.1039/D0RA04425C     URL    
[77]
Zhang M Y, Yeow J T W. Carbon, 2020, 156: 339.

doi: 10.1016/j.carbon.2019.09.062     URL    
[78]
Zheng Y, Lee D, Koo H Y, Maeng S. Carbon, 2015, 81: 54.

doi: 10.1016/j.carbon.2014.09.023     URL    
[79]
Russo P A, Donato N, Leonardi S G, Baek S, Conte D E, Neri G, Pinna N. Angew. Chem. Int. Ed., 2012, 51(44): 11053.

doi: 10.1002/anie.201204373     URL    
[80]
Anand K, Singh O, Singh M P, Kaur J, Singh R C. Sens. Actuat. B: Chem., 2014, 195: 409.
[81]
Peng R X, Wan Z Y, Song W, Yan T T, Qiao Q Q, Yang S F, Ge Z Y, Wang M T. ACS Appl. Mater. Interfaces, 2019, 11(45): 42447.

doi: 10.1021/acsami.9b16404     URL    
[82]
Lian H, Tang Z Y, Guo H, Zhong Z, Wu J, Dong Q C, Zhu F R, Wei B, Wong W Y. J. Mater. Chem. C, 2018, 6(18): 4903.

doi: 10.1039/C7TC05554D     URL    
[83]
Liu X J, Iqbal A, Ali N, Qi R R, Qian X F. ACS Appl. Mater. Interfaces, 2020, 12(17): 19431.

doi: 10.1021/acsami.0c00755     URL    
[84]
Novak T G, Shin H, Kim J, Kim K, Azam A, Nguyen C V, Park S H, Song J Y, Jeon S. ACS Appl. Mater. Interfaces, 2018, 10(21): 17957.

doi: 10.1021/acsami.8b03982     URL    
[85]
Guan X, Feng W, Wang X Z, Venkatesh R, Ouyang J. ACS Appl. Mater. Interfaces, 2020, 12(11): 13013.

doi: 10.1021/acsami.9b21185     URL    
[86]
Xu H F, Guo Y, Wu B, Hou C Y, Zhang Q H, Li Y G, Wang H Z. ACS Appl. Mater. Interfaces, 2020, 12(29): 33297.

doi: 10.1021/acsami.0c09446     URL    
[87]
Wang J M, Yu H Z, Hou C L, Zhang J. ACS Appl. Mater. Interfaces, 2020, 12(23): 26543.

doi: 10.1021/acsami.0c02489     URL    
[88]
Hou C L, Yu H Z. J. Mater. Chem. C, 2020, 8(12): 4169.

doi: 10.1039/D0TC00075B     URL    
[89]
Kim W S, Anoop G, Jeong I S, Lee H J, Kim H B, Kim S H, Goo G W, Lee H, Lee H J, Kim C, Lee J H, Mun B S, Park J W, Lee E, Jo J Y. Nano Energy, 2020, 67: 104207.

doi: 10.1016/j.nanoen.2019.104207     URL    
[90]
Lee K C, Chang-Jian C W, Cho E C, Huang J H, Lin W T, Ho B C, Chou J A, Hsiao Y S. Sol. Energy Mater. Sol. Cells, 2019, 195: 1.

doi: 10.1016/j.solmat.2019.02.027     URL    
[91]
Yi H M, Wang D, Duan L P, Haque F, Xu C, Zhang Y, Conibeer G, Uddin A. Electrochimica Acta, 2019, 319: 349.

doi: 10.1016/j.electacta.2019.06.134     URL    
[92]
Zhao J W, Xu S M, Tschulik K, Compton R G, Wei M, O'Hare D, Evans D G, Duan X. Adv. Funct. Mater., 2015, 25(18): 2745.

doi: 10.1002/adfm.v25.18     URL    
[93]
Zhou A W. Master Dissertation of Beijing University of Chemical Technology, 2016.
( 周阿武. 北京化工大学硕士论文, 2016. ).
[94]
Wang X D, Meng F L, Jiang Q L, Zhou W Q, Jiang F X, Wang T Z, Li X, Li S, Lin Y C, Xu J K. ACS Appl. Energy Mater., 2018, 1(7): 3123.

doi: 10.1021/acsaem.8b00315     URL    
[95]
Bai S C, Guo X Z, Chen T R, Zhang Y, Zhang X Y, Yang H, Zhao X Y. Compos. A: Appl. Sci. Manuf., 2020, 139: 106088.

doi: 10.1016/j.compositesa.2020.106088     URL    
[96]
Yan W R, Li J H, Zhang G P, Wang L, Ho D. J. Mater. Chem. A, 2020, 8(2): 554.

doi: 10.1039/C9TA07383C     URL    
[97]
Pan L, Wang F, Cheng Y, Leow W R, Zhang Y W, Wang M, Cai P Q, Ji B H, Li D C, Chen X D. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[98]
Hwang S, Park N I, Choi Y J, Lee S M, Han S Y, Chung D W, Lee S. J. Ind. Eng. Chem., 2019, 76: 116.
[99]
Murugan A V, Kale B B, Kwon C W, Campet G, Vijayamohanan K. J. Mater. Chem., 2001, 11(10): 2470.
[100]
Gong S, Schwalb W, Wang Y W, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W L. Nat. Commun., 2014, 5(1): 1.
[101]
Manekkathodi A, Lu M Y, Wang C W, Chen L J. Adv. Mater., 2010, 22(36): 4059.

doi: 10.1002/adma.201001289     URL    
[102]
Hyun W J, Park O O, Chin B D. Adv. Mater., 2013, 25(34): 4729.

doi: 10.1002/adma.v25.34     URL    
[103]
Wang L B, Chen W, Xu D H, Shim B S, Zhu Y Y, Sun F X, Liu L Q, Peng C F, Jin Z Y, Xu C L, Kotov N A. Nano Lett., 2009, 9(12): 4147.

doi: 10.1021/nl902368r     URL    
[104]
Kumar S, Sen A, Kumar S, Augustine S, Yadav B K, Mishra S, Malhotra B D. Appl. Phys. Lett., 2016, 108(20): 203702.

doi: 10.1063/1.4950961     URL    
[105]
Kumar S, Rai P, Sharma J G, Sharma A, Malhotra B D. Adv. Mater. Technol., 2016, 1(4): 1600056.

doi: 10.1002/admt.v1.4     URL    
[106]
Jang J, Chang M, Yoon H. Adv. Mater., 2005, 17(13): 1616.

doi: 10.1002/(ISSN)1521-4095     URL    
[107]
Briseno A L, Roberts M, Ling M M, Moon H, Nemanick E J, Bao Z N. J. Am. Chem. Soc., 2006, 128(12): 3880.

doi: 10.1021/ja058226v     URL    
[108]
Yan H, Kagata T, Mori Y, Harashina Y, Hara Y, Okuzaki H. Chem. Lett., 2008, 37(1): 44.

doi: 10.1246/cl.2008.44     URL    
[109]
Kumar S, Umar M, Saifi A, Kumar S, Augustine S, Srivastava S, Malhotra B D. Anal. Chimica Acta, 2019, 1056: 135.

doi: 10.1016/j.aca.2018.12.053     URL    
[110]
Taccola S, Greco F, Zucca A, Innocenti C, de Julián Fernández C, Campo G, Sangregorio C, Mazzolai B, Mattoli V. ACS Appl. Mater. Interfaces, 2013, 5(13): 6324.

doi: 10.1021/am4013775     URL    
[111]
Shaban M N, Hasanzadeh M, Solhi E. Anal. Methods, 2019, 11(44): 5661.

doi: 10.1039/C9AY01988J     URL    
[112]
Richter A, Burrows J P, Nüß H, Granier C, Niemeier U. Nature, 2005, 437(7055): 129.
[113]
Zampetti E, Pantalei S, Muzyczuk A, Bearzotti A, De Cesare F, Spinella C, Macagnano A. Sens. Actuat. B: Chem., 2013, 176: 390.

doi: 10.1016/j.snb.2012.10.005     URL    
[114]
Lin C Y, Chen J G, Hu C W, Tunney J J, Ho K C. Sens. Actuat. B: Chem., 2009, 140(2): 402.

doi: 10.1016/j.snb.2009.04.041     URL    
[115]
Sadek A Z, Wlodarski W, Shin K, Kaner R B, Kalantar-Zadeh K. Nanotechnology, 2006, 17(17): 4488.

doi: 10.1088/0957-4484/17/17/034     URL    
[116]
Lin Y J, Huang L, Chen L, Zhang J K, Shen L, Chen Q, Shi W Z. Sens. Actuat. B: Chem., 2015, 216: 176.

doi: 10.1016/j.snb.2015.04.045     URL    
[117]
Yan Y L, Cao J M, Meng F N, Wang N, Gao L G, Ma T L. Prog. Chem., 2019, 31(7): 1031.
( 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 化学进展, 2019, 31(7): 1031.)

doi: 10.7536/PC181202    
[118]
Zhang Y, Liu W Q, Tan F R, Gu Y Z. J. Power Sources, 2015, 274: 1224.

doi: 10.1016/j.jpowsour.2014.10.145     URL    
[119]
Niu J, Yang D, Ren X, Yang Z, Liu Y, Zhu X, Zhao W, Liu S. Organ. Electron., 2017, 48: 165.

doi: 10.1016/j.orgel.2017.05.044     URL    
[120]
Albert A, Sreelekshmi N, Jinchu I, Sreelatha K S, Sreekala C O. AIP Conf. Proc. AIP, 2019. 020122.
[121]
Gemeiner P, Kuliček J, Syrový T, Ház A, Khunová V, Hatala M, Mikula M, Hvojnik M, Gál L, Jablonský M, Omastová M. Synth. Met., 2019, 256: 116148.

doi: 10.1016/j.synthmet.2019.116148     URL    
[122]
Tiwari D C, Dwivedi S K, Dipak P, Chandel T. AIP Conf. Proc. AIP, 2018. 100065.
[123]
Cho S, Kim M, Jang J. ACS Appl. Mater. Interfaces, 2015, 7(19): 10213.
[124]
Khasim S, Pasha A, Badi N, Lakshmi M, Mishra Y K. RSC Adv., 2020, 10(18): 10526.
[125]
Liu L, Choi S. 2020 IEEE 33rd Intern. Conf. Micro Electro Mechan. Syst. IEEE, 2020, 18/22: 554.
[126]
Wang L M, Liu Y C, Zhang Z M, Wang B R, Qiu J J, Hui D, Wang S R. Compos. B: Eng., 2017, 122: 145.
[127]
Yang L, Chen Z G, Dargusch M S, Zou J. Adv. Energy Mater., 2018, 8(6): 1701797.

doi: 10.1002/aenm.v8.6     URL    
[128]
Lu Y, Ding Y F, Qiu Y, Cai K F, Yao Q, Song H J, Tong L, He J Q, Chen L D. ACS Appl. Mater. Interfaces, 2019, 11(13): 12819.

doi: 10.1021/acsami.9b01718     URL    
[129]
Yee S K, Coates N E, Majumdar A, Urban J J, Segalman R A. Phys. Chem. Chem. Phys., 2013, 15(11): 4024.

doi: 10.1039/c3cp44558e     URL    
[130]
Wang L M, Yao Q, Bi H, Huang F Q, Wang Q, Chen L D. J. Mater. Chem. A, 2015, 3(13): 7086.

doi: 10.1039/C4TA06422D     URL    
[131]
Hsieh Y Y, Zhang Y, Zhang L, Fang Y B, Kanakaraaj S N, Bahk J H, Shanov V. Nanoscale, 2019, 11(14): 6552.

doi: 10.1039/C8NR10537E     URL    
[132]
Liu X, Du Y, Meng Q F, Shen S Z, Xu J Y. J. Mater. Sci.: Mater. Electron., 2019, 30(23): 20369.
[133]
Xu N, Xu Y, Zhu J. Npj Quantum Mater., 2017, 2(1): 1.
[134]
Hor Y S, Richardella A, Roushan P, Xia Y, Checkelsky J G, Yazdani A, Hasan M Z, Ong N P, Cava R J. Phys. Rev. B, 2009, 79(19): 195208.

doi: 10.1103/PhysRevB.79.195208     URL    
[135]
Ashalley E, Chen H Y, Tong X, Li H D, Wang Z M. Front. Mater. Sci., 2015, 9(2): 103.
[136]
Sahu A, Russ B, Su N C, Forster J D, Zhou P, Cho E S, Ercius P, Coates N E, Segalman R A, Urban J J. J. Mater. Chem. A, 2017, 5(7): 3346.

doi: 10.1039/C6TA09781B     URL    
[137]
Xiong J H, Wang L Y, Xu J K, Liu C C, Zhou W Q, Shi H, Jiang Q L, Jiang F X. J. Mater. Sci.: Mater. Electron., 2016, 27(2): 1769.
[138]
Thongkham W, Lertsatitthanakorn C, Jiramitmongkon K, Tantisantisom K, Boonkoom T, Jitpukdee M, Sinthiptharakoon K, Klamchuen A, Liangruksa M, Khanchaitit P. ACS Appl. Mater. Interfaces, 2019, 11(6): 6624.
[139]
Song S, Wang K, Zhang Y H, Wang Y K, Zhang C L, Wang X, Zhang R, Chen J R, Wen T, Wang X K. Environ. Pollut., 2019, 250: 196.

doi: 10.1016/j.envpol.2019.04.020     URL    
[140]
Anilkumar K M, Jinisha B, Manoj M, Pradeep V S, Jayalekshmi S. Appl. Surf. Sci., 2018, 442: 556.
[141]
Baruah B, Kumar A. Synth. Met., 2018, 245: 74.

doi: 10.1016/j.synthmet.2018.08.009     URL    
[142]
Li H Z, McRae L, Elezzabi A Y. ACS Appl. Mater. Interfaces, 2018, 10(12): 10520.

doi: 10.1021/acsami.7b18310     URL    
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[9] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[10] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[11] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[14] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[15] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.