English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1856-1873 DOI: 10.7536/PC200852 前一篇   后一篇

• 综述 •

葡萄糖制备5-羟甲基糠醛的溶剂体系及转化机理

尹钰, 马春慧, 李伟, 刘守新*()   

  1. 东北林业大学 生物质材料科学与技术教育部重点实验室 哈尔滨 150040
  • 收稿日期:2020-08-24 修回日期:2020-11-26 出版日期:2021-10-20 发布日期:2020-12-28
  • 通讯作者: 刘守新
  • 基金资助:
    中央高校基本科研基金(2572017ET02); 国家自然科学基金重大项目(31890773)

Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose

Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu()   

  1. Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University,Harbin 150040,China
  • Received:2020-08-24 Revised:2020-11-26 Online:2021-10-20 Published:2020-12-28
  • Contact: Shouxin Liu
  • Supported by:
    Fundamental Research Funds for the Central Universities(2572017ET02); National Natural Science Foundation of China(31890773)

五羟甲基糠醛(5-HMF)被认为是近年来最具发展性和潜力的新型平台化合物。纤维素水解经由葡萄糖中间步骤进而转化为5-HMF是生物质资源制备能源平台化合物的主要利用途径之一,理解葡萄糖转化为5-HMF的过程具有重要意义。本文介绍了由葡萄糖制备5-HMF过程中的不同溶剂体系及外场对目标产物得率的影响,综述了由葡萄糖向5-HMF的转化机理,包括葡萄糖异构为果糖、果糖脱水生成5-HMF。目前,葡萄糖制备5-HMF的溶剂体系包括单相体系、离子液体、双相体系和低共熔溶剂体系,其中由离子液体和有机溶剂构成的双相反应体系是葡萄糖转化制5-HMF最有优势的反应体系,可以使生成的5-HMF迅速从反应相转移到有机相,减少副反应从而提高5-HMF得率;超声振荡、微波辐射和外加压力场通过与反应溶剂的协同作用加速传质、传热,大大缩短反应时间,提高反应效率。目前关于提高5-HMF得率以及中间产物的稳定和控制有待进一步深入研究。

5-Hydroxymethylfurfural(5-HMF) is regarded as the most developing and potential platform in recent years. The hydrolysis of cellulose to glucose and then to5-HMFis the key steps in the use of biomass resources to produce green platform compounds. Understanding the catalytic conversion process from glucose to5-HMFis of great significance for improving the potential utilization of biomass resource. Solvent systems and outfield coordination used for the preparation of5-HMFfrom glucose was introduced in this work, focusing on the mechanism of the conversion from glucose to5-HMFincluding the isomerization of glucose to fructose and the dehydration of fructose to 5-HMF. Single-phase solvents, ionic liquids, biphasic solvents and deep eutectic solvent was used in5-HMFproduction. The biphasic solvents system composed of ionic liquid and organic solvent is the most effective reaction solvent system, which can quickly transfer the5-HMFto the organic phase, reduce side reactions and increase the yield of 5-HMF. Outfield coordination of ultrasound vibration, microwave radiation and pressure field accelerate mass transfer and heat transfer, greatly shorten the reaction time and improve the reaction efficiency through the synergistic reaction with the reaction solvent. The improvement of5-HMFyield and the stability of intermediates require further research.

Contents

1 Introduction

2 Solvent systems

2.1 Single-phase solvent

2.2 Ionic liquids

2.3 Biphasic systems

2.4 Deep eutectic solvents

3 Outfield assistance

3.1 Ultrasound vibration

3.2 Microwave radiation

3.3 Pressure field

4 Mechanism of 5-HMF formation

5 Conclusions

()
图1 高附加值5-HMF衍生物[16]
Fig. 1 High value-added chemicals derived from 5-HMF[16]
表1 水溶剂中葡萄糖转化制备5-HMF
Table 1 Conversion of glucose into5-HMF in aqueous solution
图2 葡萄糖脱水制备5-HMF反应的中间产物
Fig. 2 The reaction intermediates for the dehydration of glucose to 5-HMF
表2 有机溶剂中葡萄糖转化制备5-HMF
Table 2 Conversion of glucose into 5-HMF in organic solvents
表3 离子液体中葡萄糖转化制备5-HMF
Table 3 Conversion of glucose into 5-HMF in ionic liquids
图3 Cr0-NP转化葡萄糖为5-HMF示意图
Fig. 3 General scheme for the conversion of glucose into 5-HMF by Cr0-NP
图4 [BMIM]Cl中[C4SO3Hmim]Cl催化转化葡萄糖为5-HMF
Fig.4 Catalytic conversion of glucose into 5-HMF by [C4SO3Hmim]Cl in [BMIM]Cl
图5 双相反应体系中葡萄糖制备5-HMF示意图
Fig. 5 The schematic diagram of 5-HMF production from glucose in biphasic solvent
表4 双相体系中葡萄糖转化制备5-HMF
Table 4 Conversion of glucose into 5-HMF in Biphasic systems
图6 Sn-Beta一锅法由葡萄糖制备5-HMF
Fig. 6 “One-pot” synthesis of 5-HMF from glucose using Sn-Beta
图7 双相溶剂在反应中的应用[107]
Fig. 7 Biphasic solvent applied in the reaction[107]
表5 低共熔溶剂体系中葡萄糖转化制备5-HMF
Table 5 Conversion of glucose into 5-HMF in Deep eutectic solvents
图8 在DES中合成M-D41催化剂并用于碳水化合物高效脱水制备5-HMF流程示意图[119]
Fig.8 Synthesis of M-D41 in DES for the efficient dehydration of carbohydrates to 5-HMF[119]
图9 超声探针下不同反应时间反应混合物的物理形貌(a)以及混合物离心后得到的腐黑物(b)(左:反应3 min,右:反应10 min)[123]
Fig. 9 (a) Physical appearance of sample treated with probe sonication at different reaction time, and(b) humin formation after mixture centrifuged(left: 3 mins; right: 10 mins)[123]
图10 不同加热方法示意图[36]
Fig. 10 Overview of different heating methods[36]
表6 外场辅助条件下葡萄糖转化制备5-HMF
Table 6 Conversion of glucose into 5-HMF under external fields assistance
图11 葡萄糖制备5-HMF机理
Fig. 11 The scheme of the conversion of glucose into 5-HMF
图12 葡萄糖两步降解为5-HMF
Fig. 12 Glucose degradation to 5-HMF in two steps
图13 [EMIM]Cl与金属卤化物对葡萄糖旋光异构作用[75]
Fig. 13 Schematic diagram of optical isomerization of glucose under the action of [EMIM]Cl and metal halide[75]
图14 果糖脱水机理[86]
Fig. 14 Mechanism of fructose dehydration[86]
图15 (a) [BMIM]Br的结构,(b) 缺失电子轨道的N阳离子催化转化果糖为5-HMF[148]
Fig. 15 (a) The structure of [BMIM]Br and(b) the conversion of fructose into 5-HMF catalyzed by N cation with the missing electron orbital[148]
图16 己糖通过直链中间体路线脱水生成5-HMF
Fig. 16 Acyclic reaction pathway of dehydration of hexoses to 5-HMF
图17 3-DG转化为相应取代的呋喃醛
Fig. 17 Conversion of 3-DG to corresponding substituted furfural
图18 Al(OMe)3催化葡萄糖1通过果糖转化为5-HMF 3[152]
Fig.18 Catalytic cycle of glucose 1 to 5-HMF 3 via fructose with Al(OMe)3[152]
图19 Al-KCC-1酸催化葡萄糖脱水为5-HMF[153]
Fig. 19 Acid-catalyzed dehydration of glucose to 5-HMF with Al-KCC-1[153]
[1]
Tyagi U, Anand N, Kumar D. Bioresour. Technol., 2019, 289: 121675.

doi: 10.1016/j.biortech.2019.121675     URL    
[2]
Tang Z, Su J. Bioresources, 2019, 14: 5943.

doi: 10.15376/biores.14.3.5943-5963    
[3]
Ozsel B K, Ozturk D, Nis B. Bioresour. Technol., 2019, 289: 121627.

doi: 10.1016/j.biortech.2019.121627     URL    
[4]
Zhao J, Jayakumar A, Lee J M. Acs Sustain. Chem. Eng., 2018, 6: 2976.

doi: 10.1021/acssuschemeng.7b02671     URL    
[5]
Mantovani M, Mandelli D, Gonçalves M, Carvalho W A. Chem. Eng. J., 2018, 348: 860.

doi: 10.1016/j.cej.2018.05.059     URL    
[6]
Zhang J H, Yang S S, Zhang Z X, Cui L, Jia J, Zhou D Y, Zhu B W. ChemistrySelect, 2019, 4(4): 1259.

doi: 10.1002/slct.201803528     URL    
[7]
Wang L Q, Guo H Q, Xie Q L, Wang J G, Hou B, Jia L T, Cui J L, Li D B. Appl. Catal. A: Gen., 2019, 572: 51.

doi: 10.1016/j.apcata.2018.12.023     URL    
[8]
Zhang J, Dong K J, Luo W M, Guan H F. Fuel, 2018, 234: 664.
[9]
Yu X, Peng L C, Gao X Y, He L, Chen K L. RSC Adv., 2018, 8(28): 15762.

doi: 10.1039/C8RA02056F     URL    
[10]
Delbecq F, Len C. Molecules, 2018, 23(8): 1973.

doi: 10.3390/molecules23081973     URL    
[11]
Yan L S, Ma R S, Wei H X, Li L Z, Zou B, Xu Y W. Bioresour. Technol., 2019, 279: 84.

doi: 10.1016/j.biortech.2019.01.120     URL    
[12]
Wang J J, Xi J X, Xia Q N, Liu X H, Wang Y Q. Sci. China Chem., 2017, 60(7): 870.

doi: 10.1007/s11426-016-9035-1     URL    
[13]
dos Santos Rocha M S R, Pratto B, de Sousa Jr. R, Almeida R M R G, da Cruz A J G. Bioresour. Technol., 2017, 228: 176.

doi: 10.1016/j.biortech.2016.12.087     URL    
[14]
Lin H Z, Xiong Q G, Zhao Y, Chen J P, Wang S R. AIChE J., 2017, 63(1): 257.
[15]
Guo H X, Qi X H, Hiraga Y, Aida T M, Smith Jr. R L Chem. Eng. J., 2017, 314: 508.
[16]
Zhou P, Zhang Z H. Catal. Sci. Technol., 2016, 6(11): 3694.
[17]
Wang H Y, Zhu C H, Li D, Liu Q Y, Tan J, Wang C G, Cai C L, Ma L L. Renew. Sustain. Energy Rev., 2019, 103: 227.

doi: 10.1016/j.rser.2018.12.010     URL    
[18]
Mika L T, CsÉfalvay E, NÉmeth Á. Chem. Rev., 2018, 118(2): 505.

doi: 10.1021/acs.chemrev.7b00395     URL    
[19]
Wang Y X, Hu Z X, Fan G Z, Yan J T, Song G S, Li J F. Waste Biomass Valorizat., 2019, 10(8): 2263.

doi: 10.1007/s12649-018-0242-9     URL    
[20]
Silahua-PavÓn A A, Espinosa-González C G, Ortiz-Chi F, Pacheco-Sosa J G, PÉrez-Vidal H, ArÉvalo-PÉrez J C, Godavarthi S, Torres-Torres J G. Catal. Commun., 2019, 129: 105723.

doi: 10.1016/j.catcom.2019.105723     URL    
[21]
Rathod P V, Mujmule R B, Chung W J, Jadhav A R, Kim H. Catal. Lett., 2019, 149(3): 672.
[22]
Faba L, Garces D, Diaz E, Ordonez S. ChemSusChem, 2019, 12: 3769.

doi: 10.1002/cssc.v12.16     URL    
[23]
Bizzi C A, Santos D, Sieben T C, Motta G V, Mello P A, Flores E M M. Ultrason. Sonochem., 2019, 51: 332.

doi: 10.1016/j.ultsonch.2018.09.011     URL    
[24]
Li X C, Zhang Y Y, Xia Q N, Liu X H, Peng K H, Yang S H, Wang Y Q. Ind. Eng. Chem. Res., 2018, 57(10): 3545.

doi: 10.1021/acs.iecr.8b00443     URL    
[25]
Grote F, Ermilova I, Lyubartsev A P. J. Phys. Chem. B, 2018, 122(35): 8416.

doi: 10.1021/acs.jpcb.8b03350     URL    
[26]
Bhaumik P, Chou H J, Lee L C, Chung P W. ACS Sustain. Chem. Eng., 2018, 6(5): 5712.

doi: 10.1021/acssuschemeng.7b04815     URL    
[27]
Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84(5): 339.

doi: 10.1205/cherd05038     URL    
[28]
Ranoux A, Djanashvili K, Arends I W C E, Hanefeld U. ACS Catal., 2013, 3(4): 760.

doi: 10.1021/cs400099a     URL    
[29]
Zhou C S, Zhao J, Yagoub A E A, Ma H L, Yu X J, Hu J L, Bao X J, Liu S L. Egypt. J. Petrol., 2017, 26(2): 477.

doi: 10.1016/j.ejpe.2016.07.005     URL    
[30]
Daorattanachai P, Khemthong P, Viriya-Empikul N, Laosiripojana N, Faungnawakij K. Carbohydr. Res., 2012, 363: 58.

doi: 10.1016/j.carres.2012.09.022     URL    
[31]
Zheng H W, Sun Z, Yi X H, Wang S T, Li J X, Wang X H, Jiang Z J. RSC Adv., 2013, 3(45): 23051.

doi: 10.1039/c3ra43408g     URL    
[32]
Nakajima K, Baba Y, Noma R, Kitano M, Kondo J N, Hayashi S, Hara M. J. Am. Chem. Soc., 2011, 133(12): 4224.

doi: 10.1021/ja110482r     URL    
[33]
Ramli N A S, Amin N A S. Chem. Eng. J., 2016, 283: 150.

doi: 10.1016/j.cej.2015.07.044     URL    
[34]
Zhao J, Jayakumar A, Hu Z T, Yan Y B, Yang Y H, Lee J M. ACS Sustain. Chem. Eng., 2018, 6(1): 284.

doi: 10.1021/acssuschemeng.7b02408     URL    
[35]
Wang Q F, Hao J Q, Zhao Z B. Aust. J. Chem., 2018, 71(1): 24.

doi: 10.1071/CH17154     URL    
[36]
Sweygers N, Alewaters N, Dewil R, Appels L. Sci. Rep., 2018, 8(1): 1.
[37]
Chen B L, Xu G Z, Zheng Z B, Wang D X, Zou C H, Chang C. Ind. Crops Prod., 2019, 129: 503.
[38]
Yu I K M, Tsang D C W, Yip A C K, Hunt A J, Sherwood J, Shang J, Song H, Ok Y S, Poon C S. Green Chem., 2018, 20(9): 2064.

doi: 10.1039/C8GC00358K     URL    
[39]
Xuan Y L, He R, Han B, Wu T H, Wu Y. Waste Biomass Valorizat., 2018, 9(3): 401.
[40]
Zhang L X, Xi G Y, Chen Z, Qi Z Y, Wang X C. Chem. Eng. J., 2017, 307: 877.

doi: 10.1016/j.cej.2016.09.003     URL    
[41]
Ren Q H, Huang Y Z, Ma H, Gao J, Xu J. Chin. J. Catal., 2014, 35(4): 496.

doi: 10.1016/S1872-2067(14)60012-7     URL    
[42]
Wataniyakul P, Boonnoun P, Quitain A T, Kida T, Laosiripojana N, Shotipruk A. Ind. Crops Prod., 2018, 117: 286.
[43]
Mamo W, Chebude Y, Márquez-Álvarez C, Díaz I, Sastre E. Catal. Sci. Technol., 2016, 6(8): 2766.

doi: 10.1039/C5CY02070K     URL    
[44]
Walia M, Sharma U, Agnihotri V K, Singh B. RSC Adv., 2014, 4(28): 14414.
[45]
Zhang Y, Wang J G, Wang J H, Wang Y, Wang M, Cui H Y, Song F, Sun X Y, Xie Y J, Yi W M. ChemistrySelect, 2019, 4(19): 5724.

doi: 10.1002/slct.201901084    
[46]
Meng Q W, Qiu C W, Zheng H Y, Li X Q, Zhu Y L, Li Y W. Mol. Catal., 2017, 433: 111.
[47]
Inshina O, Korduban A, Tel'Biz G, Brei V. Adsorpt. Sci. Technol., 2017, 35(5/6): 439.

doi: 10.1177/0263617417694887     URL    
[48]
Jiao H F, Zhao X L, Lv C, Wang Y J, Yang D J, Li Z H, Yao X D. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8     URL    
[49]
Amarasekara A S, Razzaq A. Carbohydr. Res., 2014, 386: 86.
[50]
Amarasekara A S, Williams L D, Ebede C C. Carbohydr. Res., 2008, 343(18): 3021.

doi: 10.1016/j.carres.2008.09.008     URL    
[51]
Meier S. Catal. Commun., 2020, 135: 105894.

doi: 10.1016/j.catcom.2019.105894     URL    
[52]
Yang L, Tsilomelekis G, Caratzoulas S, Vlachos D G. ChemSusChem, 2015, 8(8): 1334.

doi: 10.1002/cssc.201403264     pmid: 25572774
[53]
Yang G, Pidko E A, Hensen E J M. J. Catal., 2012, 295: 122.

doi: 10.1016/j.jcat.2012.08.002     URL    
[54]
Mushrif S H, Caratzoulas S, Vlachos D G. Phys. Chem. Chem. Phys., 2012, 14(8): 2637.

doi: 10.1039/c2cp22694d     pmid: 22273799
[55]
Ren L K, Zhu L F, Qi T, Tang J Q, Yang H Q, Hu C W. ACS Catal., 2017, 7(3): 2199.

doi: 10.1021/acscatal.6b01802     URL    
[56]
Tsilomelekis G, Josephson T R, Nikolakis V, Caratzoulas S. ChemSusChem, 2014, 7(1): 117.

doi: 10.1002/cssc.201300786     pmid: 24408726
[57]
Tian G, Tong X L, Cheng Y, Xue S. Carbohydr. Res., 2013, 370: 33.

doi: 10.1016/j.carres.2013.01.012     URL    
[58]
Wang Y F, Gu Z, Liu W T, Yao Y, Wang H J, Xia X F, Li W. RSC Adv., 2015, 5(75): 60736.

doi: 10.1039/C5RA08080K     URL    
[59]
Liu J, Li H, Liu Y C, Lu Y M, He J, Liu X F, Wu Z B, Yang S. Catal. Commun., 2015, 62: 19.

doi: 10.1016/j.catcom.2015.01.008     URL    
[60]
Lam E, Luong J H T. ACS Catal., 2014, 4(10): 3393.
[61]
Zhao Q M, Tao S, Miao X Y, Zhu Y. Chem. Eng. J., 2019, 372: 1164.

doi: 10.1016/j.cej.2019.05.014     URL    
[62]
Li Y N, Min S X, Wang F. Sustain. Energy Fuels, 2019, 3(10): 2753.
[63]
Lv G, Deng L L, Lu B Q, Li J L, Hou X L, Yang Y X. J. Clean. Prod., 2017, 142: 2244.
[64]
Zou B, Chen X S, Zhou C S, Yu X J, Ma H L, Zhao J, Bao X J. Can. J. Chem. Eng., 2018, 96(6): 1337.

doi: 10.1002/cjce.v96.6     URL    
[65]
Thombal R S, Jadhav V H. Appl. Catal. A: Gen., 2015, 499: 213.

doi: 10.1016/j.apcata.2015.04.021     URL    
[66]
Li W Z, Zhang T W, Xin H S, Su M X, Ma L L, Jameel H, Chang H M, Pei G. RSC Adv., 2017, 7(44): 27682.

doi: 10.1039/C7RA03155F     URL    
[67]
Zhang T W, Li W Z, Xin H S, Jin L L, Liu Q Y. Catal. Commun., 2019, 124: 56.

doi: 10.1016/j.catcom.2019.03.001     URL    
[68]
Huang F M, Su Y W, Tao Y, Sun W, Wang W T. Fuel, 2018, 226: 417.
[69]
Yang Y, Hu C W, Abu-Omar M M. Bioresour. Technol., 2012, 116: 190.

doi: 10.1016/j.biortech.2012.03.126     URL    
[70]
Zhang Y L, Xiong Q G, Chen Y, Liu M, Jin P, Yan Y S, Pan J M. Ind. Eng. Chem. Res., 2018, 57(6): 1968.

doi: 10.1021/acs.iecr.7b04671     URL    
[71]
Sweygers N, Harrer J, Dewil R, Appels L. J. Clean. Prod., 2018, 187: 1014.

doi: 10.1016/j.jclepro.2018.03.204     URL    
[72]
Enomoto K, Hosoya T, Miyafuji H. Cellulose, 2018, 25(4): 2249.

doi: 10.1007/s10570-018-1717-3     URL    
[73]
Eminov S, Brandt A, Wilton-Ely J D E T, Hallett J P. PLoS ONE, 2016, 11(10): e0163835.
[74]
Caes B R, Palte M J, Raines R T. Chem. Sci., 2013, 4(1): 196.

doi: 10.1039/C2SC21403B     URL    
[75]
Zhao H, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316(5831): 1597.

doi: 10.1126/science.1141199     URL    
[76]
Zhang Z H, Wang Q, Xie H B, Liu W J, Zhao Z K. ChemSusChem, 2011, 4(1): 131.

doi: 10.1002/cssc.v4.1     URL    
[77]
He J H, Zhang Y T, Chen E Y X. ChemSusChem, 2013, 6(1): 61.
[78]
Chinnappan A, Jadhav A H, Chung W J, Kim H. Ind. Crops Prod., 2015, 76: 12.

doi: 10.1016/j.indcrop.2015.05.085     URL    
[79]
Liu H, Wang H W, Li Y, Yang W, Song C H, Li H M, Zhu W S, Jiang W. RSC Adv., 2015, 5(12): 9290.

doi: 10.1039/C4RA09131K     URL    
[80]
Aylak A R, Akmaz S, Koc S N. Chem. Eng. Commun., 2020, 207(8): 1103.

doi: 10.1080/00986445.2019.1641489     URL    
[81]
Sezgin E, Esen Keçeci M, Akmaz S, Koc S N. Cellulose, 2019, 26(17): 9035.

doi: 10.1007/s10570-019-02702-8    
[82]
Hou Q D, Zhen M N, Liu L, Chen Y, Huang F, Zhang S Q, Li W Z, Ju M T. Appl. Catal. B: Environ., 2018, 224: 183.

doi: 10.1016/j.apcatb.2017.09.049     URL    
[83]
Hou Q D, Zhen M N, Li W Z, Liu L, Liu J P, Zhang S Q, Nie Y F, Bai C, Bai X Y, Ju M T. Appl. Catal. B: Environ., 2019, 253: 1.
[84]
Fakhraee M. J. Mol. Liq., 2019, 279: 51.

doi: 10.1016/j.molliq.2019.01.109    
[85]
Burrell A K, Sesto R E D, Baker S N, McCleskey T M, Baker G A. Green Chem., 2007, 9(5): 449.

doi: 10.1039/b615950h     URL    
[86]
de Melo F C, de Souza R F, Coutinho P L A, de Souza M O. J. Braz. Chem. Soc., 2014, 25: 2378.
[87]
Song J L, Zhang B B, Shi J H, Fan H L, Ma J, Yang Y Y, Han B X. RSC Adv., 2013, 3(43): 20085.

doi: 10.1039/c3ra43934h     URL    
[88]
Wu L Q, Song J L, Zhang B B, Zhou B W, Zhou H C, Fan H L, Yang Y Y, Han B X. Green Chem., 2014, 16(8): 3935.

doi: 10.1039/C4GC00311J     URL    
[89]
Zhang Q Q, Zhang C Y, Sun Y N, Guo Y H, Song D Y. Appl. Catal. A: Gen., 2019, 574: 10.

doi: 10.1016/j.apcata.2019.01.021     URL    
[90]
Valiyev I, Abdullayev Y, Yagubova S, Baybekov S, Salmanov C, Autschbach J. J. Mol. Liq., 2019, 280: 410.

doi: 10.1016/j.molliq.2019.02.035    
[91]
Kalghatgi S G, Bhanage B M. J. Mol. Liq., 2019, 281: 70.

doi: 10.1016/j.molliq.2019.02.053    
[92]
Jiang F, Zhu Q J, Ma D, Liu X M, Han X W. J. Mol. Catal. A: Chem., 2011, 334(1/2): 8.

doi: 10.1016/j.molcata.2010.10.006     URL    
[93]
Ramli N A S, Amin N A S. Chem. Eng. J., 2018, 335: 221.
[94]
Rout P K, Nannaware A D, Prakash O, Kalra A, Rajasekharan R. Chem. Eng. Sci., 2016, 142: 318.
[95]
Steinbach D, Kruse A, Sauer J. Biomass Convers. Biorefinery, 2017, 7(2): 247.

doi: 10.1007/s13399-017-0243-0     URL    
[96]
Zhang Y L, Li B, Guan W, Wei Y N, Yan C H, Meng M J, Pan J M, Yan Y S. Cellulose, 2020, 27(6): 3037.

doi: 10.1007/s10570-020-02994-1     URL    
[97]
Mittal A, Pilath H M, Johnson D K. Energy Fuels, 2020, 34(3): 3284.

doi: 10.1021/acs.energyfuels.9b04047     URL    
[98]
Fang J, Zheng W, Liu K, Li H, Li C. Chem. Eng. J., 2020, 385:123796.

doi: 10.1016/j.cej.2019.123796     URL    
[99]
Feng Y C, Zuo M, Zeng X H, Sun Y, Tang X, Lin L. Prog. Chem., 2018, 30: 314.
[100]
Nikolla E, Román-Leshkov Y, Moliner M, Davis M E. ACS Catal., 2011, 1(4): 408.

doi: 10.1021/cs2000544     URL    
[101]
Nahavandi M, Kasanneni T, Yuan Z S, Xu C C, Rohani S. ACS Sustain. Chem. Eng., 2019, 7(14): 11970.

doi: 10.1021/acssuschemeng.9b00250    
[102]
Zhao P P, Zhang Y Y, Wang Y, Cui H Y, Song F, Sun X Y, Zhang L P. Green Chem., 2018, 20(7): 1551.
[103]
Chen D W, Liang F B, Feng D X, Xian M, Zhang H B, Liu H Z, Du F L. Chem. Eng. J., 2016, 300: 177.
[104]
Subsadsana M, Miyake K, Ono K, Ota M, Hirota Y, Nishiyama N, Sansuk S. New J. Chem., 2019, 43(24): 9483.

doi: 10.1039/c9nj00462a    
[105]
Cao Z, Fan Z X, Chen Y, Li M, Shen T, Zhu C J, Ying H J. Appl. Catal. B: Environ., 2019, 244: 170.

doi: 10.1016/j.apcatb.2018.11.019     URL    
[106]
Feng Y C, Li M Z, Gao Z B, Zhang X, Zeng X H, Sun Y, Tang X, Lei T Z, Lin L. ChemSusChem, 2019, 12(2): 495.

doi: 10.1002/cssc.v12.2     URL    
[107]
Feng Y C, Zuo M, Wang T, Jia W L, Zhao X Y, Zeng X H, Sun Y, Tang X, Lei T Z, Lin L. J. Taiwan Inst. Chem. Eng., 2019, 96: 431.

doi: 10.1016/j.jtice.2018.12.013     URL    
[108]
Qiu G, Huang C P, Sun X L, Chen B H. Green Chem., 2019, 21(14): 3930.

doi: 10.1039/C9GC01225G     URL    
[109]
Pagán-Torres Y J, Wang T F, Gallo J M R, Shanks B H, Dumesic J A. ACS Catal., 2012, 2(6): 930.

doi: 10.1021/cs300192z     URL    
[110]
Gallo J M R, Alonso D M, Mellmer M A, Dumesic J A. Green Chem., 2013, 15(1): 85.

doi: 10.1039/C2GC36536G     URL    
[111]
Liu D J, Chen E Y X. Biomass Bioenergy, 2013, 48: 181.

doi: 10.1016/j.biombioe.2012.11.020     URL    
[112]
Saha B, De S, Fan M H. Fuel, 2013, 111: 598.

doi: 10.1016/j.fuel.2013.03.031     URL    
[113]
Hou Q D, Li W Z, Zhen M N, Liu L, Chen Y, Yang Q, Huang F, Zhang S Q, Ju M T. RSC Adv., 2017, 7(75): 47288.
[114]
Guo H X, Duereh A, Hiraga Y, Qi X H, Smith R L Jr. Energy Fuels, 2018, 32(8): 8411.

doi: 10.1021/acs.energyfuels.8b00717     URL    
[115]
Marullo S, Rizzo C, D'Anna F. ACS Sustain. Chem. Eng., 2019, 7(15): 13359.

doi: 10.1021/acssuschemeng.9b02605     URL    
[116]
Matsumiya H, Hara T. Biomass Bioenergy, 2015, 72: 227.

doi: 10.1016/j.biombioe.2014.11.001     URL    
[117]
Zuo M, Le K, Li Z, Jiang Y T, Zeng X H, Tang X, Sun Y, Lin L. Ind. Crops Prod., 2017, 99: 1.

doi: 10.1016/j.indcrop.2017.01.027     URL    
[118]
Zuo M, Le K, Feng Y C, Xiong C X, Li Z, Zeng X H, Tang X, Sun Y, Lin L. Ind. Crops Prod., 2018, 112: 18.

doi: 10.1016/j.indcrop.2017.11.001     URL    
[119]
Feng Y C, Yan G H, Wang T, Jia W L, Zeng X H, Sperry J, Sun Y, Tang X, Lei T Z, Lin L. ChemSusChem, 2019, 12(5): 978.

doi: 10.1002/cssc.v12.5     URL    
[120]
D'Anna F, Marullo S, Vitale P, Rizzo C, Lo Meo P, Noto R. Appl. Catal. A: Gen., 2014, 482: 287.

doi: 10.1016/j.apcata.2014.05.039     URL    
[121]
Marullo S, Rizzo C, Meli A, D'Anna F. ACS Sustain. Chem. Eng., 2019, 7(6): 5818.

doi: 10.1021/acssuschemeng.8b05584     URL    
[122]
Chu Q Y, Chen J, Hou W H, Yu H X, Wang P, Liu R, Song G L, Zhu H J, Zhao P P. Chin. J. Catal., 2018, 39(5): 955.

doi: 10.1016/S1872-2067(17)63007-9     URL    
[123]
Sarwono A, Man Z, Muhammad N, Khan A S, Hamzah W S W, Rahim A H A, Ullah Z, Wilfred C D. Ultrason. Sonochemistry, 2017, 37: 310.

doi: 10.1016/j.ultsonch.2017.01.028     URL    
[124]
Rasrendra C B, Soetedjo J N M, Makertihartha I G B N, Adisasmito S, Heeres H J. Top. Catal., 2012, 55(7/10): 543.

doi: 10.1007/s11244-012-9826-y     URL    
[125]
Lu J H, Yan Y N, Zhang Y H, Tang Y. RSC Adv., 2012, 2(20): 7652.

doi: 10.1039/c2ra21011h     URL    
[126]
Palav T, Seetharaman K. Carbohydr. Polym., 2006, 65(3): 364.

doi: 10.1016/j.carbpol.2006.01.024     URL    
[127]
Guo F, Fang Z, Zhou T J. Bioresour. Technol., 2012, 112: 313.

doi: 10.1016/j.biortech.2012.02.108     URL    
[128]
Li K L, Xia L X, Li J, Pang J, Cao G Y, Xi Z W. Carbohydr. Res., 2001, 331(1): 9.

doi: 10.1016/S0008-6215(00)00311-6     URL    
[129]
Wang P, Ren L H, Lu Q Y, Huang Y B. Chem. Eng. Commun., 2016, 203(11): 1507.

doi: 10.1080/00986445.2016.1213724     URL    
[130]
Zhou X M, Zhang Z H, Liu B, Xu Z, Deng K J. Carbohydr. Res., 2013, 375: 68.
[131]
Li X C, Peng K H, Xia Q N, Liu X H, Wang Y Q. Chem. Eng. J., 2018, 332: 528.

doi: 10.1016/j.cej.2017.06.105     URL    
[132]
Jing S S, Cao X F, Zhong L X, Peng X W, Sun R C, Liu J C. Ind. Crops Prod., 2018, 126: 151.

doi: 10.1016/j.indcrop.2018.10.028     URL    
[133]
Garces D, Faba L, Diaz E, Ordonez S. ChemSusChem, 2019, 12(4): 924.

doi: 10.1002/cssc.201802315    
[134]
Girisuta B, Dussan K, Haverty D, Leahy J J, Hayes M H B. Chem. Eng. J., 2013, 217: 61.

doi: 10.1016/j.cej.2012.11.094     URL    
[135]
Kang S M, Fu J X, Zhang G. Renew. Sustain. Energy Rev., 2018, 94: 340.
[136]
Zou X L, Zhu C, Wang Q, Yang G. Biofuels, Bioprod. Bioref., 2019, 13(1): 153.
[137]
Kunnikuruvan S, Nair N N. ACS Catal., 2019, 9(8): 7250.

doi: 10.1021/acscatal.9b00678    
[138]
Saang'Onyo D, Parkin S, Ladipo F T. Polyhedron, 2018, 149: 153.

doi: 10.1016/j.poly.2018.03.035     URL    
[139]
Li Z H, Su K M, Ren J, Yang D J, Cheng B W, Kim C K, Yao X D. Green Chem., 2018, 20(4): 863.

doi: 10.1039/C7GC03318D     URL    
[140]
Song J L, Han B X, Zhou B W, Wu L Q. Chin. Sci. Bull., 2015, 60(16): 1522.

doi: 10.1360/N972014-01397     URL    
[141]
Li J J, Li J H, Zhang D J, Liu C B. J. Phys. Chem. B, 2015, 119(42): 13398.

doi: 10.1021/acs.jpcb.5b07773     URL    
[142]
Pidko E A, Degirmenci V, Hensen E J M. ChemCatChem, 2012, 4(9): 1263.

doi: 10.1002/cctc.201200111     URL    
[143]
Overton J C, Zhu X, Mosier N S. ACS Sustainable Chem. Eng., 2019, 7(15): 12997.

doi: 10.1021/acssuschemeng.9b02096     URL    
[144]
Li G N, Pidko E A, Hensen E J M, Nakajima K. ChemCatChem, 2018, 10(18): 4084.

doi: 10.1002/cctc.v10.18     URL    
[145]
Hu B, Lu Q, Jiang X Y, Dong X C, Cui M S, Dong C Q, Yang Y P. J. Energy Chem., 2018, 27(2): 486.

doi: 10.1016/j.jechem.2017.11.013     URL    
[146]
Asim A M, Uroos M, Naz S, Sultan M, Griffin G, Muhammad N, Khan A S. J. Mol. Liq., 2019, 287.
[147]
Labauze H, Camy S, Floquet P, Benjelloun-Mlayah B, Condoret J S. Ind. Eng. Chem. Res., 2019, 58(1): 92.

doi: 10.1021/acs.iecr.8b04694    
[148]
Wang Q H, Su K M, Li Z H. Mol. Catal., 2017, 438: 197.
[149]
Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G. Appl. Catal. A: Gen., 1996, 145(1/2): 211.

doi: 10.1016/0926-860X(96)00136-6     URL    
[150]
Jadhav H, Pedersen C M, Sølling T, Bols M. ChemSusChem, 2011, 4(8): 1049.

doi: 10.1002/cssc.201100249     URL    
[151]
Guan J, Cao Q, Guo X C, Mu X D. Comput. Theor. Chem., 2011, 963(2/3): 453.

doi: 10.1016/j.comptc.2010.11.012     URL    
[152]
Wang Q, Fu M X, Li X J, Huang R F, Glaser R E, Zhao L L. J. Comput. Chem., 2019, 40(16): 1599.
[153]
Shahangi F, Najafi Chermahini A, Saraji M. J. Energy Chem., 2018, 27(3): 769.
[1] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[2] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[3] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.
[4] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[5] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[6] 冯云超, 左淼, 曾宪海*, 孙勇, 唐兴, 林鹿*. 葡萄糖制备5-羟甲基糠醛[J]. 化学进展, 2018, 30(2/3): 314-324.
[7] 方莉, 贺进禄. 无酶葡萄糖传感器[J]. 化学进展, 2015, 27(5): 585-593.
[8] 张宇琪, 俞计成, 沈群东, 顾臻. 随葡萄糖响应的合成类闭路胰岛素递释系统[J]. 化学进展, 2015, 27(1): 11-26.
[9] 李京, 谢小丽, 王佳佳, 王晓敏, 李静, 王鹏. 戈谢病的药物分子伴侣[J]. 化学进展, 2014, 26(05): 889-897.
[10] 周理龙, 吴廷华*, 吴瑛*. 纤维素在离子液体中的降解转化[J]. 化学进展, 2012, 24(08): 1533-1543.
[11] 胡磊, 孙勇, 林鹿. 离子液体介导制备5-羟甲基糠醛[J]. 化学进展, 2012, 24(04): 483-491.
[12] 石文韬, 邸静, 马占芳. 电化学葡萄糖传感器[J]. 化学进展, 2012, 24(04): 568-576.
[13] 胡磊, 孙勇, 林鹿. 生物质转化为液体燃料2,5-二甲基呋喃 的途径与机理[J]. 化学进展, 2011, 23(10): 2079-2084.
[14] 李艳 魏作君 陈传杰 刘迎新. 碳水化合物降解为5-羟甲基糠醛的研究*[J]. 化学进展, 2010, 22(08): 1603-1609.
[15] 黄世勇,王富丽,潘丽霞. 果糖脱水制备5-羟甲基糠醛*[J]. 化学进展, 2009, 21(0708): 1442-1449.