English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1547-1556 DOI: 10.7536/PC200225 前一篇   后一篇

• 综述 •

开环聚合接枝改性木质素

秦国富1, 刘一寰1, 尹帆1, 胡欣2,**(), 朱宁1,**(), 郭凯1   

  1. 1.南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800
    2.南京工业大学材料科学与工程学院 南京 211800
  • 收稿日期:2020-02-24 修回日期:2020-05-19 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 胡欣, 朱宁
  • 基金资助:
    国家自然科学基金项目(22078150)

Grafting Modification of Lignin via Ring-Opening Polymerization

Guofu Qin1, Yihuan Liu1, Fan Yin1, Xin Hu2,**(), Ning Zhu1,**(), Kai Guo1   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received:2020-02-24 Revised:2020-05-19 Online:2020-10-24 Published:2020-09-02
  • Contact: Xin Hu, Ning Zhu
  • About author:
    **e-mail:(Xin Hu)
  • Supported by:
    National Natural Science Foundation of China(22078150)

作为自然界储量丰富的生物质资源之一,木质素尚未得到充分利用,成为掣肘生物化工发展的挑战。利用木质素丰富的功能基团进行接枝聚合改性,已成为木质素高值化利用的一个重要途径。开环聚合是一种温和、高效的聚合方法,可以将脂肪族聚酯链段引入到木质素中,提高材料的溶解性、相容性和可降解性,拓展木质素的应用范围。本文关注多催化条件下丙交酯、己内酯等环状单体通过开环聚合对木质素进行接枝改性的研究进展,同时对木质素改性材料的性能、应用以及发展前景进行了探讨。

As one of the most abundant biomass resources in nature, lignin has not been fully utilized, which has become a challenge to the development of biochemical industry. As an important strategy to achieve high-value utilization of lignin, grafting modification of lignin has been paid much attention. Ring-opening polymerization is a mild and efficient polymerization method, which can introduce aliphatic polyester segments into lignin. Compared to the pristine lignin, graft polymers show improved solubility, compatibility and degradability. This paper focuses on the progress of grafting modification of lignin via ring opening polymerization by using varied catalysis. Lactide, caprolactone and other cyclic monomers are summarized. The performance and applications of lignin grafted polymers are discussed as well as the challenges and opportunities.

Contents

1 Introduction

2 Catalysis for ring-opening polymerization

2.1 Metal-catalyzed ring-opening polymerization

2.2 Enzymatic ring-opening polymerization

2.3 Organocatalyzed ring-opening polymerization

3 Lactide as monomer

3.1 Synthesis of lignin grafted polylactide

3.2 Effect of lignin's structure and lactide's chirality

3.3 Application of lignin grafted polylactide

4 Caprolactone as monomer

4.1 Synthesis of lignin grafted polycaprolactone

4.2 Application of lignin grafted polycaprolactone

5 Other monomers

5.1 Oxazoline

5.2 Cyclic carbonate

5.3 β-Butyrolactone

6 Conclusion and outlook

()
图1 木质素单体的前驱体[5]
Fig.1 Precursor of lignin monomer[5]
图2 配位-插入型开环聚合机理
Fig.2 Coordination-insertion mechanism
图3 酶促开环聚合机理[43]
Fig.3 Enzymatic ring-opening polymerization mechanism[43]
图4 亲核单体活化机理
Fig.4 Nucleophilic monomer activation mechanism
图5 亲电单体活化机理
Fig.5 Electrophilic monomer activation mechanism
图6 链末端活化机理
Fig.6 Chain-end activation mechanism
图7 双官能团活化机理
Fig.7 Bifunctional activation mechanism
表1 不同催化剂制备木质素接枝聚丙交酯
Table 1 Preparation of Lignin-g-PLA with different catalysts
图8 TBD催化合成木质素接枝共聚物[54]
Fig.8 TBD catalytic synthesis of lignin graft copolymer[54]
图9 三种合成木质素接枝共聚物的方法[63]
Fig.9 Three methods for synthesizing lignin graft copolymer[63]
图10 烷基化木质素对PLA材料进行增韧[61]
Fig.10 Grafting modification of dodecylated lignin via ROP of LA [61]
表2 引发己内酯开环聚合的不同木质素
Table 2 Different lignins as the initiators for ROP of CL
图11 TBD催化合成生物丁醇木质素接枝聚己内酯[74]
Fig.11 TBD catalytic synthesis of BBL-g-PCL[74]
表3 用于木质素开环聚合接枝改性的其他单体
Table 3 The other cyclic monomers for grafting modification
[1]
路瑶, 魏贤勇(Wei X Y), 宗志敏(Zong Z M), 陆永超(Lu Y C), 赵炜(Zhao W), 曹景沛(Cao J P). 化学进展 (Progress in Chemistry), 2013,25:838.
[2]
Doherty W O S, Mousavioun P, Fellows C M. Industrial Crops and Products, 2011,33:259.
[3]
Figueiredo P, Lintinen K, Hirvonen J T, Kostiainen M A, Santos H A. Progress in Materials Science, 2018,93:233.
[4]
Wang C, Kelley S S, Venditti R A. ChemSusChem, 2016,9:770. doi: 10.1002/cssc.201501531

URL     pmid: 27059111
[5]
Kai D, Tan M J, Chee P L, Chua Y K, Yap Y L, Loh X J. Green Chemistry, 2016,18:1175.
[6]
翟景琳(Zhai J L), 胡欣(HuX), 刘成扣(LiuC K), 朱宁(ZhuN), 郭凯(Guo K). 化学进展 (Progress in Chemistry), 2019,31:1293.
[7]
Liu H, Chung H. Journal of Polymer Science Part A: Polymer Chemistry, 2017,55:3515.
[8]
马晓振(Ma X Z), 罗清(LuoQ), 秦冬冬(QinD D), 陈景(ChenJ), 朱锦(Zhu J), 颜宁(Yan N) 化学进展 (Progress in Chemistry). 2020,32:617.
[9]
Upton B M, Kasko A M. Chemical Reviews, 2016,116:2275. doi: 10.1021/acs.chemrev.5b00345

URL     pmid: 26654678
[10]
Corrigan N, Jung K, Moad G, Hawker C J, Matyjaszewski K, Boyer C. Progress in Polymer Science, 2020,111:101311.
[11]
Gurnani P, Perrier S. Progress in Polymer Science, 2020,102:101209.
[12]
Mocny P, Klok H A. Progress in Polymer Science, 2020,100:101185.
[13]
Huang W, Zhai J, Hu X, Duan J, Fang Z, Zhu N, Guo K. European Polymer Journal, 2020,126:109565.
[14]
Zhu N, Hu X, Fang Z, Guo K. ChemPhotoChem, 2018,2:831.
[15]
Song Q, Pascouau C, Zhao J, Zhang G, Peruch F, Carlotti S. Progress in Polymer Science, 2020,110:101309.
[16]
Zhu N, Feng W, Zhang Z, Fang Z, Li Z, Guo K. Polymer, 2015,80:88.
[17]
Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K. Macromol. Rapid Commun, 2018,39:1700807.
[18]
Hu X, Zhu N, Fang Z, Guo K. Reaction Chemistry & Engineering, 2017,2:20.
[19]
Hu X, Cui G, Zhu N, Zhai J, Guo K. Polymers (Basel), 2018,10:68.
[20]
Zhu N, Hu X, Zhang Y, Zhang K, Li Z, Guo K. Polymer Chemistry, 2016,7:474.
[21]
Zhu N, Feng W, Hu X, Zhang Z, Fang Z, Zhang K, Li Z, Guo K. Polymer, 2016,84:391.
[22]
Hu X, Zhang Y, Cui G, Zhu N, Guo K. Macromol. Rapid Commun, 2017,38:1700399.
[23]
Zhu N, Liu Y, Feng W, Huang W, Zhang Z, Hu X, Fang Z, Li Z, Guo K. European Polymer Journal, 2016,80:234.
[24]
Hu X, Cui G, Zhang Y, Zhu N, Guo K. European Polymer Journal, 2018,100:228.
[25]
Kowalski A, Duda A, Penczek S. Macromolecules, 2000,33:7359. doi: 10.1021/ma000125o
[26]
Kowalski A, Duda A, Penczek S. Macromolecules, 2000,33:689.
[27]
Dagorne S, Fliedel C. Top Organomet. Chem., 2012,41:125.
[28]
Ling J, Zhu W, Shen Z. Macromolecules, 2004,37:758.
[29]
Ling J, Shen Z, Huang Q. Macromolecules, 2001,34:7613. doi: 10.1021/ma0107657
[30]
Lin J O, Chen W, Shen Z, Ling J. Macromolecules, 2013,46:7769.
[31]
Ling J, Liu J, Shen Z, Hogen-Esch T E. Journal of Polymer Science Part A: Polymer Chemistry, 2011,49:2081.
[32]
Ling J, Shen J, Hogen-Esch T E. Polymer, 2009,50:3575.
[33]
Liu J, Ling J, Li X, Shen Z. Journal of Molecular Catalysis A: Chemical, 2009,300:59.
[34]
Sun Y, Yang L, Lu X, He C. Journal of Materials Chemistry A, 2015,3:3699.
[35]
Thomas C M, Chem. Soc. Rev, 2010,39:165.

URL     pmid: 20023847
[36]
Kai D, Zhang K, Jiang L, Wong H Z, Li Z, Zhang Z, Loh X J. ACS Sustainable Chemistry & Engineering, 2017,5:6016.
[37]
Li Y, von der Lühe M, Schacher F H, Ling J. Macromolecules, 2018,51:4938.
[38]
You L, Ling J. Macromolecules, 2014,47:2219.
[39]
Li Y, Bai T, Li Y, Ling J. Macromolecular Chemistry and Physics, 2017,218:1600450.
[40]
Li Y, Schacher F H, Ling J. Macromol. Rapid Commun, 2019,40:1800905.
[41]
Shah M I, Yang Z, Li Y, Jiang L, Ling J. Polymers (Basel), 2017,9:559.
[42]
Huang W, Zhu N, Liu Y, Wang J, Zhong J, Sun Q, Sun T, Hu X, Fang Z, Guo K. Chemical Engineering Journal, 2019,356:592.
[43]
Gross R A, Kumar A, Kalra B. Chemical Reviews, 2001,101:2097. doi: 10.1021/cr0002590

URL     pmid: 11710242
[44]
Seyednejad H, Ghassemi A H, van Nostrum C F, Vermonden T, Hennink W E. J. Control. Release, 2011,152:168.

URL     pmid: 21223989
[45]
Zhu N, Zhang Z L, He W, Geng X C, Fang Z, Li X, Li Z J, Guo K. Chinese Chemical Letters, 2015,26:361.
[46]
Hu S, Zhao J, Zhang G, Schlaad H. Progress in Polymer Science, 2017,74:34.
[47]
Xia H, Kan S, Li Z, Chen J, Cui S, Wu W, Ouyang P, Guo K. Journal of Polymer Science Part A: Polymer Chemistry, 2014,52:2306.
[48]
Kan S, Jin Y, He X, Chen J, Wu H, Ouyang P, Guo K, Li Z. Polymer Chemistry, 2013,4:5432.
[49]
Liu J, Cui S, Li Z, Xu S, Xu J, Pan X, Liu Y, Dong H, Sun H, Guo K. Polymer Chemistry, 2016,7:5526.
[50]
Zhu N, Liu Y, Liu J, Ling J, Hu X, Huang W, Feng W, Guo K. Sci. Rep., 2018,8:3734.

URL     pmid: 29487371
[51]
Alamri H, Zhao J, Pahovnik D, Hadjichristidis N. Polym. Chem., 2014,5:5471.
[52]
Zhao J, Zhang G, Pispas S. Journal of Polymer Science Part A: Polymer Chemistry, 2010,48:2320.
[53]
Pratt R C, Lohmeijer B G G, Long D A, Waymouth R M, Hedrick J L. Journal of the American Chemical Society, 2006,128:4556.

URL     pmid: 16594676
[54]
Chung Y L, Olsson J V, Li R J, Frank C W, Waymouth R M, Billington S L, Sattely E S. ACS Sustainable Chemistry & Engineering, 2013,1:1231.
[55]
Kamber N E, Jeong W, Waymouth R M, Pratt R C, Lohmeijer B G G, Hedrick J L. Chemical Reviews, 2007,107:5813.

URL     pmid: 17988157
[56]
张国栋(Zhang G D), 杨纪元(YangJ Y), 冯新德(FengX D), 顾忠伟(Gu Z W) 化学进展 (Progress in Chemistry), 2000,12:89.
[57]
Harris S B, Tschirner U W, Lemke N, van Lierop J L. Journal of Wood Chemistry and Technology, 2017,37:211.
[58]
Dai L, Liu R, Si C. Green Chemistry, 2018,20:1777.
[59]
Liu R, Dai L, Hu L Q, Zhou W Q, Si C L. Mater. Sci. Eng. C. Mater. Biol. Appl., 2017,80:397.

URL     pmid: 28866180
[60]
Liu R, Dai L, Zou Z, Si C. Int. J. Biol. Macromol, 2018,119:1129. doi: 10.1016/j.ijbiomac.2018.08.040

URL     pmid: 30098362
[61]
Ren W, Pan X, Wang G, Cheng W, Liu Y. Green Chemistry, 2016,18:5008.
[62]
Kai D, Ren W, Tian L, Chee P L, Liu Y, Ramakrishna S, Loh X J. ACS Sustainable Chemistry & Engineering, 2016,4:5268.
[63]
Chile L E, Kaser S J, Hatzikiriakos S G, Mehrkhodavandi P. ACS Sustainable Chemistry & Engineering, 2018,6:1650.
[64]
Dick A T, Couve J, Gimello O, Mas A, Robin J J. Polymer, 2017,118:280.
[65]
Olsén P, Jawerth M, Lawoko M, Johansson M, Berglund L A. Green Chemistry, 2019,21:2478.
[66]
Liu Y, Huang W, Zhu N, Guo K. RSC Advances, 2017,7:37412.
[67]
Liu Y, Zhu N, Hu X, Huang W, Wu J, Bin X, Qiu J, Duan J, Fang Z, Guo K. Chemical Engineering Science, 2020,211:115290.
[68]
Zhu N, Zhang Z, Feng W, Zeng Y, Li Z, Fang Z, Zhang K, Li Z, Guo K. RSC Advances, 2015,5:31554.
[69]
Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K. Chemical Engineering Journal, 2018,333:43.
[70]
高晗(Gao H), 徐军(Xu J), 胡欣(Hu X), 朱宁(Zhu N), 郭凯(Guo K). 化学进展 (Progress in Chemistry), 2018,30:1634.
[71]
许茸(Xu R), 陈春霞(Cheng C X). 化学进展 (Progress in Chemistry), 2012,24:1519.
[72]
Matsushita Y, Inomata T, Takagi Y, Hasegawa T, Fukushima K. Journal of Wood Science, 2011,57:214.
[73]
Laurichesse S, Avérous L. Polymer, 2013,54:3882. doi: 10.1016/j.polymer.2013.05.054
[74]
Liu X, Zong E, Jiang J, Fu S, Wang J, Xu B, Li W, Lin X, Xu Y, Wang C, Chu F. Int. J. Biol. Macromol., 2015,81:521. doi: 10.1016/j.ijbiomac.2015.08.046

URL     pmid: 26306414
[75]
Park I K, Sun H, Kim S H, Kim Y, Kim G E, Lee Y, Kim T, Choi H R, Suhr J, Nam J D. Sci. Rep, 2019,9:7033. doi: 10.1038/s41598-019-43296-2

URL     pmid: 31065000
[76]
Jang S H, Kim D H, Park D H, Kim O Y, Hwang S H. Progress in Organic Coatings, 2018,120:234.
[77]
Abdollahi M, Bairami Habashi R, Mohsenpour M. Industrial Crops and Products, 2019,130:547.
[78]
Tian J, Yang Y, Song J. Int J Biol Macromol, 2019,141:919. doi: 10.1016/j.ijbiomac.2019.09.055

URL     pmid: 31513856
[79]
Pérez-Camargo R A, Saenz G, Laurichesse S, Casas M T, Puiggalí J, Avérous L, Müller A J. Journal of Polymer Science Part B: Polymer Physics, 2015,53:1736.
[80]
Kim S H, Choi K, Choi H R, Kim T, Suhr J, Kim K J, Choi H J, Nam J D. ACS Omega, 2019,4:10036. doi: 10.1021/acsomega.9b01043

URL     pmid: 31460096
[81]
Nadji H, Bruzzèse C, Belgacem M N, Benaboura A, Gandini A. Macromolecular Materials and Engineering, 2005,290:1009.
[82]
Schmidt B V K J, Molinari V, Esposito D, Tauer K, Antonietti M. Polymer, 2017,112:418.
[83]
Nemoto T, Konishi G I, Tojo Y, An Y C, Funaoka M. Journal of Applied Polymer Science, 2012,123:2636.
[84]
Mahata D, Jana M, Jana A, Mukherjee A, Mondal N, Saha T, Sen S, Nando G B, Mukhopadhyay C K, Chakraborty R, Mandal S M. Scientific Reports, 2017,7:46412.

URL     pmid: 28401944
[85]
Duval A, Avérous L. ACS Sustainable Chemistry & Engineering, 2017,5:7334.
[86]
Kühnel I, Saake B, Lehnen R. Industrial Crops and Products, 2017,101:75.
[87]
Kai D, Chong H M, Chow L P, Jiang L, Lin Q, Zhang K, Zhang H, Zhang Z, Loh X J. Composites Science and Technology, 2018,158:26. doi: 10.1016/j.compscitech.2018.01.046
[1] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[2] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[3] 马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626.
[4] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[5] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[6] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[7] 高晗, 徐军, 胡欣, 朱宁, 郭凯. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
[8] 纪娜, 宋静静, 刁新勇, 宋春风, 刘庆岭*, 郑明远*. 硫化物催化木质素及其模型化合物转化制备高附加值化学品[J]. 化学进展, 2017, 29(5): 563-578.
[9] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[10] 张兴华, 陈伦刚, 张琦, 龙金星, 王铁军, 马隆龙. 木质素基酚类化合物加氢脱氧制取碳氢燃料[J]. 化学进展, 2014, 26(12): 1997-2006.
[11] 路瑶, 魏贤勇*, 宗志敏, 陆永超, 赵炜, 曹景沛. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(05): 838-858.
[12] 许茸, 陈春霞*. 有机小分子催化ε-己内酯开环聚合反应[J]. 化学进展, 2012, 24(08): 1519-1525.
[13] 李光, 白如科. 叠氮聚合物的合成[J]. 化学进展, 2011, 23(8): 1692-1699.
[14] 李启蒸, 张国艺, 袁聪, 魏柳荷, 马志. 聚烯烃/聚酯(聚醚)共聚物的合成及其应用[J]. 化学进展, 2011, 23(6): 1174-1180.
[15] 周莅霖 袁金颖 蔡志楠 洪啸吟. 活性开环聚合与可控自由基聚合机理转换合成精细结构共聚物*[J]. 化学进展, 2010, 22(09): 1799-1807.
阅读次数
全文


摘要

开环聚合接枝改性木质素