English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 954-960 DOI: 10.7536/PC151218 前一篇   后一篇

• 综述与评论 •

靶向性载体/基因复合物促进内皮细胞增殖

刘雯1, 张立2, 杨静1, 郝雪芳1, 李茜1, 冯亚凯1,2*   

  1. 1. 天津大学化工学院 天津 30007;
    2. 天津大学-HZG研究中心 生物材料和再生医学联合实验室 天津 300072
  • 收稿日期:2015-12-01 修回日期:2016-01-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 冯亚凯 E-mail:yakaifeng@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.31370969)和科技部国家国际合作基金(No.2013DFG52040)资助

Targeting Carrier/Gene Complexes to Promote the Proliferation of Endothelial Cells

Liu Wen1, Zhang Li2, Yang Jing1, Hao Xuefang1, Li Qian1, Feng Yakai1,2*   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 30007;
    2. Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China
  • Received:2015-12-01 Revised:2016-01-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31370969) and the Ministry of Science and Technology of China(No.2013DFG52040).
由于人工血管的表面缺乏活性内皮层,特别是小口径人工血管经常面临着长期通畅率低和再狭窄等难题,从而限制了其在临床上的应用。研究表明,通过基因复合物对内皮细胞转染可以在支架表面快速获得新生内皮层。近年来,基于靶向多肽修饰的基因载体为提高转染效率和降低载体毒性提供了有效的途径。本文详细介绍了目前用于基因转染的各种目的基因和基因载体,并以聚阳离子基因载体为基础,重点阐述了促进内皮细胞增殖的靶向性基因载体的研究进展,结合当前小口径人工血管研究进展,对采用基因转染方式实现其快速内皮化进行了分析和展望。
Due to the lack of a living functional layer of endothelial cells (ECs) on the surface of artificial vascular scaffolds, especially small-diameter artificial vascular scaffolds, usually encounter long-term low patency and restenosis, limiting their clinical application. Nevertheless, it has been proved that re-endothelialization of artificial vascular scaffolds can be aquired rapidly via gene transfection towards endothelial cells, which is mediated by gene complexes. At present, gene carriers modified with targeting peptides provide a useful approach to promote transfection efficiency as well as decrease cytotoxicity. We introduce the desired genes and gene carriers applied in gene transfection detailedly. Based on polycationic gene carriers, the recent developments of gene carriers with targeting peptides for promoting the proliferation of ECs and endothelialization are highlighted in this review. Combined with the progress of small diameter artificial blood vessels, some perspectives on accomplishing rapid endothelialization via gene transfection are also presented.

Contents
1 Introduction
2 Non-viral gene carriers
3 Peptides for selective adhesion of endothelial cells
4 Gene carriers for targeting transfection of endothelial cells
5 Artificial vascular scaffolds modified by targeting carrier/gene complexes
6 Conclusion and outlook

中图分类号: 

()
[1] Liu T, Liu S, Zhang K, Chen J, Huang N. J. Biomed. Mater. Res. A, 2014, 102: 3754.
[2] Boland E D, Matthews J A, Pawlowski K J, Simpson D G, Wnek G E, Bowlin G L. Front. Biosci., 2004, 9: 1422.
[3] Teebken O E, Haverich A. Tissue engineering of small diameter vascular grafts. Eur. J. Vasc. Endovasc., 2002, 23: 475.
[4] Ren X K, Feng Y K, Guo J T, Wang H X, Li Q, Yang J, Hao X F, Lv J, Ma N, Li W Z. Chem. Soc. Rev., 2015, 44: 5680.
[5] Zhao H Y, Feng Y K, Guo J T. J. Appl. Polym. Sci., 2011,119: 3717.
[6] Tan M Q, Feng Y K, Wang H Y, Zhang L, Khan M, Guo J T, Chen Q L, Liu J S. Macromol. Res., 2013, 21: 541.
[7] Wang H Y, Feng Y K, Yuan W J, Zhao H Y, Fang Z C, Khan M, Guo J T. Sci. China Phys. Mech., 2012, 55: 1189.
[8] Gao W, Feng Y K, Lu J, Guo J T. BER: Materials Research Society, 2012. 1403.
[9] Lu J, Feng Y K, Gao B, Guo J T. J. Polym. Res., 2012, 19: 9959.
[10] Gao B, Feng Y K, Lu J, Zhang L, Zhao M, Shi C C, Khan M, Guo J T. Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33: 2871.
[11] Khan M, Yang J, Shi C C, Feng Y K, Zhang W C, Gibney K, Tew G N. Macromol. Mater. Eng., 2015, 300: 802.
[12] Yang J, Lv J, Gao B, Zhang L, Yang D Z, Shi C C, Guo J T, Li W Z, Feng Y K. Front. Chem. Sci. Eng., 2014, 8: 188.
[13] Yang J, Lv J, Behl M, Lendlein A, Yang D Z, Zhang L, Shi C C, Guo J T, Feng Y K. Macromol. Biosci., 2013, 13: 1681.
[14] Salehi-Nik N, Amoabediny G,Shokrgozar M A, Mottaghy K, Klein-Nulend J, Zandieh-Doulabi B. Biomed. Mater., 2015, 10: 015024.
[15] Zhang M, Wang Z X, Wang Z F, Feng S R, Xu H J, Zhao Q, Wang S F, Fang J X, Qiao M Q, Kong D L. Colloids Surf. B: Biointerfaces, 2011, 85: 32.
[16] Fujita M, Ishihara M, Simizu M, Obara K, Ishizuka T, Saito Y, Yura H, Morimoto Y, Takase B, Matsui T, Kikuchi M, Maehara T. Biomaterials, 2004, 25: 699.
[17] Rincon M Y, Vanden D T, Chuah M K. Cardiovasc. Res., 2015, 108: 4.
[18] Sinn P L, Sauter S L, McCray P L. Gene Ther., 2005, 12: 1089.
[19] Davis M E. Curr. Opin. Biotech., 2002, 13: 128.
[20] Niidome T, Huang L. Gene Ther., 2002, 9: 1647.
[21] Godbey W T, Wu K K, Mikos A G.. J. Control. Release, 1999, 60: 149.
[22] Zhang Z, Lai Y X, Yu L, Ding J D. Biomaterials, 2010, 31: 7873.
[23] Wei Y, Ji Y, Xiao L L, Lin Q K, Xu J P, Ren K F, Ji J. Biomaterials, 2013, 34: 2588.
[24] Kanie K, Narita Y, Zhao Y, Kuwabara F, Satake M, Honda S, Kaneko H, Yoshioka T, Okchi M, Honda H, Kato R. Biotechnol. Bioeng., 2012, 109: 1808.
[25] Wei Y, Ji Y, Xiao L L, Lin Q K, Ji J. Colloid. Surface. B, 2011, 84: 369.
[26] Lin Q K, Hou Y, Ren K F, Ji J. Thin Solid Films, 2012, 520: 4971.
[27] Lahtinen M, Blomberg P, Baliulis G, Carlsson F, Khamis H, Zemgulis V. Eur. J. Cardiothorac. Surg. , 2007, 31: 383.
[28] Yin T, He S S, Su C, Chen X C, Zhang D M, Wan Y, Ye T H, Shen G B, Wang Y S, Shi H S, Yang L, Wei Y Q. Mol. Med. Rep. , 2015, 12: 5093.
[29] Sun H Y, Wei S P, Xu R C, Xu P X, Zhang W C. Biochem. Biophys. Res. Commun., 2010, 395: 361.
[30] Hirko A, Tang F X, Hughes J A. Curr. Med. Chem., 2003, 10: 1185.
[31] Fischer D, Li Y X, Ahlemeyer B, Krieglstein J, Kissel T. Biomaterials, 2003, 24: 1121.
[32] Mousazadeh M, Palizban A, Salehi R, Salehi, M. J. Drug Target., 2007, 15: 226.
[33] Wimmer N, Marano R J, Kearns P S, Rakoczy E P, Toth I. Bioorg. Med. Chem. Lett., 2002, 12: 2635.
[34] Pun S H,Bellocq N C, Liu A J, Jensen G, Machemer T, Quijanon E, Schluep T, Wen S F, Engler H, Heidel J, Davis M E. Bioconjugate Chem., 2004, 15: 831.
[35] Jiang D H, Salem A K. Int. J. Pharm. , 2012, 427: 71.
[36] Zhao X L, Li Z Y, Pan H B, Liu W G, Lv M M, Leung F, Lu W W. Acta Biomater., 2013, 9: 6694.
[37] Peng L H, Wei W, Qi X T, Shan Y H, Zhang F J, Chen X, Zhu Q Y, Yu L, Liang W Q, Gao J Q. Mol. Pharmaceutics, 2013, 10: 3090.
[38] Tian H Y, Guo Z P, Chen J, Lin L, Xia J L, Dong X, Chen X S. Adv. Healthc. Mater., 2012, 1: 337.
[39] Khan M, Ong Z Y, Wiradharma N, Attia A B E, Yang Y Y. Adv. Healthc. Mater., 2012, 1: 373.
[40] Fadeel B, Garcia-Bennett A E. Adv. Drug Deliv. Rev., 2010, 62: 362.
[41] Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit J P. Biomaterials, 2008,29: 3477.
[42] Liddington R C, Ginsberg M H. J. Cell Biol., 2002, 158: 833.
[43] Zheng W T, Wang Z H, Song L J, Zhao Q, Zhang J, Li D, Wang S F, Han J H, Zheng X L, Yang Z M, Kong D L. Biomaterials, 2012, 33: 2880.
[44] Hubbell J A, Massia S P, Desai N P, Drumheller P D. Biotechnology, 1991, 9: 568.
[45] Ji Y, Wei Y, Liu X S, Wang J L, Ren K F, Ji J. J. Biomed. Mater. Res. Part A, 2012, 100A: 1387.
[46] Kato R, Kaga C, Kanie K, Kunimatsu M, Okochi M, Honda H. Mini-Rev. Org. Chem., 2011, 8: 171.
[47] Khan M, Yang J, Shi C C, Lv J, Feng Y K, Zhang W C. Acta Biomater., 2015, 20: 69.
[48] Suh W, Han S O, Yu L, Kim S W. Mol. Ther., 2002, 6: 664.
[49] Wang H X, Feng Y K, Yang J, Guo J T, Zhang W C. J. Mater. Chem. B, 2015, 3: 3379.
[50] Shi C C, Yao F L, Li Q, Khan M, Ren X K, Feng Y K, Huang J W, Zhang W C, Biomaterials, 2014, 35: 7133.
[51] Shi C C, Li Q, Zhang W C, Feng Y K, Ren X K. ACS Appl. Mater. Interfaces, 2015, 7: 20389.
[52] Hao X F, Li Q, Lv J, Yu L, Ren X K, Zhang L, Feng Y K, Zhang W C. ACS Appl. Mater. Interfaces, 2015, 7: 12128.
[53] Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. J. Control. Release, 2011, 153: 141.
[54] Sanjoh M, Miyata K, Christie R J, Ishii T, Maeda Y, Pittella F, Hiki S, Nishiyama N, Kataoka K. Biomacromolecules, 2000, 7: 1664.
[55] Hayashi K, Nakamura S, Morishita R, Moriguch A, Aoki M, Matsumoto K, Sakai N, Ogihara T. Gene Ther., 2000, 7: 1664.
[56] Chen F, Wan H Y, Xia T, Guo X Q, Wang H, Liu Y W, Li X H. Eur. J. Pharm. Biopharm., 2013, 85: 699.
[57] Luu Y K, Kim K, Hsiao B S, Chu B, Hadjiargyrou M. J.Control. Release, 2003, 89: 341.
[58] Yu L, Feng Y K, Li Q, Hao X F, Liu W, Zhou W, Shi C C, Ren X K, Zhang W C. React. Funct. Polym., 2015, 91: 19.
[59] Sharif F, Hynes S O, McCullagh K J, Ganley S, Greiser U, McHugh P, Crowley J, Barry F, O'Brien T. Gene Ther., 2012, 19: 321.
[60] Yang J, Zeng Y, Zhang, C, Chen, Y X, Yang Z Y, Li Y J, Len, X G, Kong D L, Wei X Q, Sun H F,Song C X. Biomaterials, 2013, 34: 1635.
[1] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[2] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[3] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.
[4] 李思迪, 侯信, 亓洪昭, 赵瑾, 原续波. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2/3): 353-362.
[5] 刘亚杰, 张鹏, 杜建委, 王幽香. 微纳米粒子的形貌调控及其对药物/基因传递体系的影响[J]. 化学进展, 2016, 28(1): 67-74.
[6] 古晓晓, 杜宝吉, 李云辉, 高莹*, 李丹, 汪尔康. 基于纳米材料的基因载体[J]. 化学进展, 2015, 27(8): 1093-1101.
[7] 徐妮为, 刘梦艳, 洪诗斌, 颜蔚, 付继芳, 邓维. 基于环糊精构建的基因载体进展[J]. 化学进展, 2014, 26(0203): 375-384.
[8] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
[9] 杨婵丽, 董雄伟, 江南, 章丹, 刘长林*. 细胞研究中的金属配合物-核酸相互作用[J]. 化学进展, 2013, 25(04): 555-562.
[10] 董博, 闫熙博, 牛玉洁, 王欣, 王连永, 王燕铭* . 聚酰胺-胺型树枝状大分子及其衍生物在基因传递中的应用[J]. 化学进展, 2012, 24(12): 2352-2358.
[11] 杨奇志, 刘佳, 蒋序林. 点击化学在生物医用高分子中的应用[J]. 化学进展, 2010, 22(12): 2377-2387.
[12] 吉伟航,林琳,陈大勇,刘文广. 刺激响应性非病毒转基因载体*[J]. 化学进展, 2008, 20(06): 936-941.
[13] 孙彦庆,张剑,张高勇,王红霞. DNA与两性表面活性剂相互作用研究*[J]. 化学进展, 2006, 18(11): 1440-1445.
[14] 高群,万锕俊. 新型亲核NO共体Diazeniumdiolate及其靶向性控释材料*[J]. 化学进展, 2006, 18(09): 1101-1109.