English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 942-953 DOI: 10.7536/PC160113 前一篇   后一篇

• 综述与评论 •

甲醇一步催化转化制甲缩醛和甲酸甲酯的双功能催化剂

刘焕君, 高腾飞, 施达, 刘健, 季生福*   

  1. 北京化工大学化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2016-01-01 修回日期:2016-03-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 季生福 E-mail:jisf@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21573015)资助

Bifunctional Catalysts of Methanol Catalytic Conversion to Dimethoxymethane and Methyl Formate

Liu Huanjun, Gao Tengfei, Shi Da, Liu Jian, Ji Shengfu*   

  1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2016-01-01 Revised:2016-03-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21573015).
甲醇是重要的基础化工原料,随着全球甲醇产能过剩,将甲醇催化转化为高附加值的甲醇下游化学品具有重要意义,其中甲醇一步催化转化为甲缩醛(DMM)和甲酸甲酯(MF)等高附加值甲醇下游化学品备受人们的关注,而这一过程中的双功能催化剂是关键。本文对近几年来甲醇催化转化一步合成甲缩醛和甲酸甲酯的双功能催化剂体系进行了总结和评述,特别是对贵金属催化体系、金属氧化物催化体系、杂多酸催化体系等双功能催化剂的催化作用和产物分布特点进行了仔细分析,以期对甲醇催化转化一步合成甲缩醛和甲酸甲酯的工艺放大提供一些参考。
Methanol is a kind of important basic chemical raw material. With the increase of global methanol production capacity, the catalytic conversion of methanol to methanol downstream high value-added downstream products is very important. The bifunctional catalysts for one-step oxidation of methanol to dimethoxymethane (DMM) and methyl formate (MF) with high value-added are very useful and have received considerable attention. In this paper, the recent applications of bifunctional catalysts for one-step oxidation of methanol to DMM and MF in recent are reviewed and summarized. The catalysis of bifunctional catalysts and the distribution of the products, especially the precious metal catalysts, metal oxide catalysts and heteropolyacid catalysts are carefully analyzed in order to provide a wide range of references for the catalytic conversion of methanol through synthesis step process of DMM and MF.

Contents
1 Introduction
2 The bifunctional catalysts for one-step catalytic conversion of methanol to DMM
2.1 The precious metal catalysts
2.2 The metal oxide catalysts
2.3 The supported heteropoly acid catalysts
3 The bifunctional catalysts for one-step synthesis of methyl formate from methanol
3.1 The precious metal catalysts
3.2 The metal oxide catalysts
4 Conclusion and outlook

中图分类号: 

()
[1] 张丽平(Zhang L P).天然气化工(Natural Gas Chemical Industry), 2013, 38(1): 89.
[2] 武建斌(Wu J B),吴志伟(Wu Z W), 王瑞义(Wang R Y), 师瑞萍(Shi R P), 秦张峰(Qin Z F), 朱华青(Zhu H Q), 董梅(Dong M), 樊卫斌(Fan W B), 王建国(Wang J G).燃料化学学报(Journal of Fuel Chemistry and Technology), 2015, 43(7): 816.
[3] 彭必先(Peng B X), 甘昌胜(Gan C S), 闫天堂(Yan T T).化学进展(Progress in Chemistry), 2004, 16(3): 414.
[4] 王玉和(Wang Y H), 贺德华(He D H), 徐柏庆(Xu B Q).化学进展(Progress in Chemistry), 2003, 15(3): 215.
[5] 宋一兵(Song Y B), 罗爱国(Luo A G), 杜玉海(Du Y H), 方奕文(Fang Y W).化学进展(Progress in Chemistry),2008, 20(23): 221.
[6] 穆仕芳(Mu S F), 尚如静(Shang R J), 魏灵朝(Wei L C), 蒋元力(Jiang Y L).现代化工(Modern Chemical Industry), 2011, 31(5): 11.
[7] 李美兰(Li M L), 邓志勇(Deng Z Y), 翟刚(Zhai G).天然气化工(Natural Gas Chemical Industry), 2014, 39(6): 82.
[8] 付鹏(Fu P), 谢璇(Xie X), 李永刚(Li Y G), 邢海军(Xing H J), 宁春利(Ning C L), 张春雷(Zhang C L).化学世界(Chemical World), 2013, 15(6): 380.
[9] Liu H C, Iglesia E J. Phys. Chem. B, 2005, 109: 2155.
[10] 陈文龙(Chen W L), 刘海超(Liu H C).化学反应工程与工艺(Chemical Engineering and Technology), 2013, 29(5): 462.
[11] Li M L, Long Y, Deng Z Y, Zhang H, Yang X G, Wang G Y. Catal. Commu., 2015, 68: 46.
[12] 曹虎(Cao H), 郑岩(Zheng Y), 马珺(Ma J), 李军平(Li J P), 赵宁(Zhao N), 王秀芝(Wang X Z), 魏伟(Wei W), 董满祥(Dong M X), 孙予罕(Sun Y H), 张启同(Zhang Q T).燃料化学学报(Journal of Fuel Chemistry and Technology), 2007, 35(3): 334.
[13] 李欢(Li H), 李军平(Li J P), 肖福魁(Xiao F K), 魏伟(Wei W), 孙予罕(Sun Y H).燃料化学学报(Journal of Fuel Chemistry and Technology), 2009, 37(5): 613.
[14] Yuan Y Z, Liu H C, Imoto H, Shido T, Iwasawa Y. J. Catal., 2000,195: 51.
[15] 袁友珠(Yuan Y Z), 曹为(Cao W), 蔡启瑞(Cai Q R).高等学校化学学报(Chemical Journal of Chinese Universities), 2002, 23(5): 902.
[16] Secordel X, Tougerti A, Cristol S, Dujardin C, Blanck D, MorinJ C, Capron M, Mamede A S, Paul J F, Languille M A, Berrier E C R. Comptes Rendus Chimie, 2014, 17: 808.
[17] Olesya A N, Mickaël C,Fang G, Faye J, Mamede A S. J. Catal., 2011, 279: 310.
[18] Zhan E S, Li Y, Liu J L, Huang X M, Shen W J. Catal. Commun., 2009, 10: 2051.
[19] Lu X L, Qin Z F, Dong M, Zhu H Q, Wang G F, Zhao Y B, Fan W B. Fuel, 2011, 90: 1335.
[20] Chen S, Wang S P, Ma X B, Gong G L. Chem. Commun., 2011, 47: 9345.
[21] He L, Liu H C, Xiao C X, Kou Y. Green Chem., 2008, 10: 619.
[22] Guo Y L, Lu G Z, Mo X H, Wang Y S. Catal. Lett., 2005, 99: 105.
[23] Wojcieszak R, Gaigneaux M, Ruiz P. ChemCatChem., 2013, 5: 339.
[24] Wojcieszak R, Karelovic A, Gaigneaux E M, Ruiz P. Catal. Sci. Technol., 2014, 4: 3298.
[25] Wittstock A, Zielasek V, Biener J, Friend C M, Bäumer M. Science, 2010, 327: 319.
[26] Whiting S A, Kondrat S A, Hammond C, Dimitratos N, He Q, Morgan D J, Dummer N F, Bartley J K, Kiely C J, Taylor S H, Hutchings G J. ACS Catal., 2015, 5: 637.
[27] 武建斌(Wu J B), 王辉(Wang H), 秦张峰(Qin Z F), 吴志伟(Wu Z W), 黄礼春(Huang L C), 赵启(Zhao Q), 王建国(Wang J G).燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39(2): 64.
[28] Zhao Y B, Qin Z F, Wang G F, Dong M, Huang L C, Wu Z W, Fan W B, Wang J G. Fuel, 2013,104: 22.
[29] 张胜红(Zhang S H), 张鸿鹏(Zhang H P), 李为臻(Li W Z), 张伟(Zhang W), 黄华(Huang H), 刘海超(Liu H C). 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26: 1879.
[30] Li W Z, Liu H C, Iglesia E. J. Phys. Chem. B, 2006, 110: 23337.
[31] Yuan Y Z, Iwasawa Y. J. Phys. Chem. B, 2002, 106: 4441.
[32] Secordel X, Berrier E, Capron M, Cristol S, Paul J F, Fournier M. Catal. Today, 2010, 155: 177.
[33] 刘鹏(Liu P), 邓志勇(Deng Z Y), 杨先贵(Yang X G), 姚洁(Yao J), 胡静(Hu J), 王公应(Wang G Y). 天然气化工(C 化学与化工)(Natural Gas Chemical Industry), 2013, 38(6):16.
[34] Guo H Q, Li D B, Jiang D, Li W H, Sun Y H. Catal. Lett., 2010, 135: 48.
[35] Guo H Q, Li D B, Chen C B, Jia L T, Hou B. RSC Adv., 2015, 5: 64202.
[36] Guo H Q, Li D B, Jiang D, Li W H, Sun Y H. Catal. Commun., 2010, 11: 396.
[37] Guo H Q, Chen C B, Xiao Y, Wang J G, Fan Z H, Li D B, Sun Y H. Fuel Process Tech., 2013, 106: 77.
[38] Liu J W, Fu Y C, Sun Q, Shen G Y. Micro. Meso. Materials, 2008, 116: 614.
[39] 郭荷芹(Guo H Q), 李德宝(Li D B), 陈从标(Chen C B), 范志宏(Fan Z H), 孙予罕(Sun Y H). 催化学报(Chinese Journal of Catalysis), 2012, 33(5): 813.
[40] Liu J W, Sun Q, Fu Y C, Zhao H Y, Auroux A, Shen J Y. Catal. Lett., 2008, 126: 155.
[41] Zhao H, Bennici S, Shen J, Auroux A. J. Mol. Catal. A, 2009, 309: 28.
[42] Zhao H, Bennici S, Shen J, Auroux A. J. Therm. Anal. Calorim., 2010, 99: 843.
[43] Zhao H, Bennici S, Cai J, Shen J, Auroux A. Catal. Today, 2010, 152: 70.
[44] Zhao H Y, Bennici S, Cai J X, Shen J, Auroux L. J. Catal., 2010, 274: 259.
[45] Zhao H Y, Bennici S, Shen J Y, Shen J, Auroux A. Appl. Catal. A: Gen., 2010, 385: 224.
[46] Zhao H Y, Bennici S, Shen J Y, Shen J, Auroux A. J. Catal., 2010, 272: 176.
[47] Fan Z H, Guo H Q, Fang K G, Sun Y H. RSC Adv., 2015, 5: 24795.
[48] Chen S, Meng Y L, Zhao Y J, Ma X B, Gong J L. AIChE J., 2013, 59: 2587.
[49] Meng Y L, Wang T, Chen S, Zhao Y J, Ma X B, Gong J L. Appl. Catal. B: Envir., 2014,161: 161.
[50] Faye J, Capron M, Takahashi A, Pau S, Katryniok B, Fujitani T, Dumeignil F. Energy Sci. & Eng., 2015, 3: 115.
[51] Gornay J, Sécordel X, Tesquet G, Menorval B, Cristol S, Fongarland P, Capron M, Duhamel L, Payen E, Dubois J L, Dumeignil F. Green Chem., 2010,12: 1722.
[52] Thavornprasert K A, Capron M, Jalowiecki-Duhamel L, Gardoll O, Trentesaux M, Mamede A S, Fang G, Faye J, Touati N, Vezin H, Dubois J L, Couturier J L, Dumeignil F. Appl. Catal. B: Envir., 2014, 145: 126.
[53] 郭荷芹(Guo H Q), 李德宝(Li D B), 姜东(Jiang D), 李文怀(Li W H), 孙予罕(Sun Y H).天然气化工(Natural Gas Chemical Industry), 2010, 35(2): 1.
[54] Prado N T, Nogueria F G E, Nogueira A E, Nunes C A, Diniz R, Oliveira L C A. Energy Fuels, 2010, 24: 4793.
[55] Golinska-Mazwa H, Decyk P, Ziolek M. J. Catal., 2011, 284: 109.
[56] Deshlahra P, Carr R T, Chai S H, Iglesia E. ACS Catal., 2015, 5: 666.
[57] Liu H C, Bayat N, Iglesia E. Angew. Chem. Int. Ed., 2003, 42: 5072.
[58] Guo H Q, Li D B, Xiao H C, Zhang J L, Li W H, Sun Y H. Kor. J. Chem. Eng., 2009, 26: 902.
[59] Hvolbæk B, Janssens T V, Clausen B S, Falsig H, Christensen C H, Norsknov J K. Nano Today, 2007, 2: 14.
[60] Tenney S A, Cagg B A, Levine M S, He W, Manandhar K, Chen D A. Surf. Sci., 2012, 606: 1233.
[61] Zhang Q F, Li Y K, Zhang L, Chen L, Liu Y. J. Catal., 2014, 317: 54.
[62] Xu B J, Siler C G F, Madix R J, Friend C M. Chem. Eur. J., 2014, 20: 4646.
[63] Han C H, Yang X Z, Gao G J, Wang J, Lu H L, Liu J, Tong M, Liang X Y. Green Chem., 2014, 16: 3603.
[64] Yang Z, Li J, Yang X G, Wu W. Catal. Lett., 2005, 100: 205.
[65] Whiting S A, Kondrat S A, Hammond C, Dimitratos N, He Q, Morgan D J, Dummer N F, Bartley J K, Kiely C J, Taylor S H, Hutchings G J. ACS Catal., 2015, 5: 637.
[66] 施瑞萍(Shi R P), 王辉(Wang H), 朱华青(Zhu H Q), 吴志伟(Wu Z W), 秦张峰(Qin Z F), 樊卫斌(Fan W B), 王建国(Wang J G).燃料化学学报(Journal of Fuel Chemistry and Technology), 2012, 40(8): 985.
[67] Wang R Y, Wu Z W, Chen C M, Qin Z M, Zhu H Q, Wang G F, Wang H, Wu C M, Dong W W, Fan W B, Wang G J. Chem. Commun., 2013, 49: 8250.
[68] Lichtenberger J, Lee D, Iglesia E. Phys. Chem. Chem. Phys., 2007, 9: 4902.
[69] Wojcieszak R, Ghazzal M N, Gaigneaux E M, Ruiz P. Catal. Sci. Tech., 2014, 4: 738.
[70] Lee K J, Min S H, Jang J. Small, 2010, 6: 2378.
[71] Merte L R, Ahmadi M, Behafarid F, Ono L K, Lira E, Matos J, Li L, Yang J C, Cuenya B R. ACS Catal.,2013, 3: 1460.
[72] Lu Z P, Gao D Z, Yin H B, Wang A L, Liu S X. J. Ind. Eng. Chem., 2015, 31: 301.
[73] Liu J, Han C H, Yang X Z, Gao G J, Shi Q Q, Min Tong, Liang X Y, Li C F. J. Catal., 2016, 333: 162.
[74] Valente N G, Arrúa L A, Cadús L E. Appl. Catal. A, 2001, 205: 201.
[75] Wang J B, Cheng J Y, Wang C,Yang S X, Zhu W P. Catal. Commun., 2013, 41: 1.
[76] Over H. Chem. Rev., 2012,112: 3356.
[77] 李为臻(Li W Z), 刘海超(Liu H C). 催化学报(Chinese Journal of Catalysis), 2006, 27(10): 840.
[78] Li W Z, Zhang H P, He X H, Liu H C. J. Energy Chem., 2013,22: 512.
[79] Huang H, Li W Z, Liu H C. Catal. Today, 2012,183: 58.
[80] Liu J L, Zhan E S, Cai W J, Li J, Shen W J. Catal. Lett., 2008, 120: 274.
[81] Kaichev V V, Popova G Y, Chesalov Y A, Saraev A A, Zemlyanov D Y, Beloshapkin S A, Knop-Gericke A, Schlogl R, AndrushkevichT V, Bukhtiyarov V I. J. Catal., 2014, 311: 59.
[1] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[2] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[3] 林玲, 朱青, 徐安武. 直接甲醇燃料电池的阳极和阴极催化剂[J]. 化学进展, 2015, 27(9): 1147-1157.
[4] 汪家喜, 魏晓骏, 沈佳宇, 吕晓萌, 谢吉民, 陈敏. 光催化选择性合成有机物[J]. 化学进展, 2014, 26(09): 1460-1470.
[5] 陈兆旭*, 黄玉成, 何翔. Pd/ZnO催化甲醇水蒸气重整理论研究[J]. 化学进展, 2012, 24(06): 873-878.
[6] 王新东, 谢晓峰, 王萌, 刘桂成, 苗睿瑛, 王一拓, 阎群. 直接甲醇燃料电池关键材料与技术[J]. 化学进展, 2011, 23(0203): 509-519.
[7] 樊博 郭玉国 万立骏. Pt基电催化材料*[J]. 化学进展, 2010, 22(05): 852-860.
[8] 王连鸳 徐文浩 杨基础. 超临界甲醇在化学反应中的应用[J]. 化学进展, 2010, 22(05): 796-802.
[9] 李涛 钟贵明 杨勇. 直接甲醇燃料电池用阻醇全氟磺酸复合质子交换膜*[J]. 化学进展, 2010, 22(0203): 522-536.
[10] 王梦凡 齐崴 苏荣欣 何志敏. 交联酶聚体技术研究进展*[J]. 化学进展, 2010, 22(01): 173-178.
[11] 赵东江 尹鸽平 魏杰. 聚合物膜燃料电池阴极非Pt催化剂[J]. 化学进展, 2009, 21(12): 2753-2759.
[12] 虞贤波,刘烨,阳永荣,王靖岱. 甲醇制烯烃反应机理[J]. 化学进展, 2009, 21(09): 1757-1762.
[13] 索春光,刘晓为,张宇峰,张博,张鹏,王路文. 直接甲醇燃料电池膜电极的研究与进展*[J]. 化学进展, 2009, 21(0708): 1662-1671.
[14] 王荣蓉,金宝舵,李春文,王泽,谢晓峰,丁青青. 直接甲醇燃料电池的甲醇浓度控制方法* [J]. 化学进展, 2009, 21(0708): 1655-1661.
[15] 齐亮,谢晓峰,金宝舵,郭建伟,徐景明. 直接甲醇燃料电池的交流阻抗谱分析*[J]. 化学进展, 2008, 20(12): 2083-2092.