文章编号: 1598927004310-82018804
文献标识码: A
邻菲罗啉类配体在铁系元素催化反应中的应用
![]() |
朱守非 南开大学化学学院教授。长期从事催化有机合成化学研究,重点研究了几类以氢转移为关键步骤的有机合成反应,提出了“手性质子梭催化剂”概念,发现了催化硼氢键插入新反应,发展了多种新型负氢转移催化剂。 |
收稿日期:2020-06-02
修回日期:2020-06-21
网络出版日期:2020-09-01
基金资助
国家自然科学基金项目(21625204,21971119)
教育部111引智基地项目(B06005)
国家万人计划项目()
版权
Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis
Received:2 Jun. 2020
Revised:21 Jun. 2020
Online:1 Sept. 2020
Fund
the National Natural Science Foundation of China(21625204,21971119)
the “111” Project of the Ministry of Education of China,(B06005)
the National Program for Special Support of Eminent Professionals.()
Copyright
邹慧娜 , 朱守非 . 邻菲罗啉类配体在铁系元素催化反应中的应用[J]. 化学进展, 2020 , 32(11) : 1766 -1803 . DOI: 10.7536/PC200607
Huina Zou , Shoufei Zhu . Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis[J]. Progress in Chemistry, 2020 , 32(11) : 1766 -1803 . DOI: 10.7536/PC200607
1,10-Phenanthroline and its derivatives, classic bidentate N-donor ligands, can form stable complexes with a variety of transition metals and have been widely used as catalysts in various organic reactions. Ferritic elements(iron, cobalt, nickel) have the advantages of high natural abundance, low cost, low toxicity and unique catalytic performance. The complexes of 1,10-phenanthroline type ligands and ferritic elements are ideal alternative catalysts. In recent years, 1,10-phenanthroline type ligands have been widely used in Fe/Co/Ni-catalyzed organic reactions,especially in cross-coupling reactions, addition reactions,and redox reactions,showing unique ligand effects. More and more studies revealed that the rigid aromatic structure of 1,10-phenanthroline plays an important role in improving the stability of the catalyst, and the substituents of 1,10-phenanthroline have a significant impact on the activity and selectivity of corresponding catalyst. More interestingly, a few recent studies disclosed that 1,10-phenanthroline ligands might change the spin state and three-dimensional electronic structure of the Fe/Co/Ni catalysts, which accounts for their unique reactivity as well as selectivity.Although with the above-mentioned progresses, there are still several important challenges in this field, including the poor structural diversity of 1,10-phenanthroline type ligands and poor understanding of the electron effect of 1,10-phenanthroline ligands to corresponding metal catalysts.In this review, we summarized the applications of 1,10-phenanthroline ligands in Fe/Co/Ni-catalyzed organic reactions, and gave an outlook of this promising field.
1 Introduction
2 Application of 1,10-phenanthroline type ligands in Fe-catalyzed reactions
2.1 Coupling reactions
2.2 Oxidation reactions
2.3 Reduction reactions
2.4 Addition reactions
2.5 Other reactions
3 Application of 1,10-phenanthroline type ligands in Co-catalyzed reactions
3.1 Addition reactions
3.2 Cycloaddition reactions
3.3 C—H functionalization reactions
3.4 Carboxylation reactions
3.5 Coupling reactions
3.6 Other reactions
4 Application of 1,10-phenanthroline type ligands in Ni-catalyzed reactions
4.1 Cross-coupling reactions
4.2 Reductive coupling reactions
4.3 Oxidation reactions
4.4 Hydrogen-borrowing reactions
4.5 Decarboxylative coupling reactions
4.6 Addition reactions
4.7 Oxidative reactions
5 Conclusion and outlook
Key words: 1,10-phenanthroline type ligands ; ferritic elements ; catalysts ; metal complexes
图式2 (A)芳基自由基转移芳基化[34];(B)非活化芳烃的直接芳基化反应[35];(C)芳基硼酸和苯衍生物的氧化偶联反应[36];(D)式(C)可能的机理[36]Scheme 2 (A) Direct arylation through an aryl radical transfer pathway[34];(B) Direct arylation of unactivated arenes[35];(C) Oxidative coupling of arylboronic acids with benzene derivatives[36];(D) Proposed mechanism of(C)[36] |
图式67 (A)镍催化的烷基亲电试剂和芳基溴代物的链行走还原交叉偶联反应[108];(B)可见光与镍共同催化的链行走还原交叉偶联反应[109];(C)芳基卤代物和烷基溴的电化学还原链行走交叉偶联反应[110]Scheme 67 (A) Nickel-catalyzed reductive relay cross-coupling of alkyl bromides and aryl bromides[108];(B) Photochemical nickel-catalyzed reductive migratory cross-coupling of alkyl bromides with aryl bromides[109];(C) Electrochemical reductive relay cross-coupling of alkyl halides to aryl halides[110] |
图式74 (A)光氧化还原与镍催化结合的溴代物与CO2的羧化反应[117];(B)光氧化还原与镍催化结合的远程C(sp3)-H键的羧化反应[118];(C)式(A)可能的机理[117]Scheme 74 (A) Carboxylation of aromatic and aliphatic bromides with CO2 by dual visible-light-nickel catalysis[117];(B) Remote C(sp3)-H carboxylation enabled by the merger of photoredox and nickel catalysis[118];(C) Proposed mechanism of (A)[117] |
图式76 (A)经串联溴化/羧化反应将生物质原料直接催化转化为单一脂肪酸类化合物[120];(B)未活化烷基溴代物的远端C(sp3)-H键处的选择性羧化[120];(C)可能的机理[120]Scheme 76 (A) Application to the direct catalytic conversion of biomass-derived feedstocks into single fatty acids via a tandem bromination/carboxylation process[120];(B) Switchable site-selective carboxylation of unactivated alkyl bromides at remote C(sp3)-H sites[120];(C)Proposed mechanism[120] |
图式77 (A)烯基/大位阻的芳基三氟甲磺酸酯与CO2的羧化反应[70];(B)烯丙基酯与CO2的还原羧基化反应[121];(C)(杂)芳基氟磺酸酯与CO2的还原羧化反应[122];(D)式(C)可能的机理[122]Scheme 77 (A) Carboxylation of alkenyl and sterically hindered aryl triflates utilizing CO2[70];(B) Reductive carboxylation of allyl esters with C[122];(C) Carboxylation of aryl and heteroaryl fluorosulfates with CO2[122];(D) Proposed mechanism of (C)[122] |
图式86 (A)酮与醇的α-烷基化反应合成支链偕二烷基酮[133];(B)甲基酮与醇的α-烷基化反应合成线性单取代酮[134];(C)可能的机理[134]Scheme 86 (A) α-Alkylation of ketones with alcohols to prepare branched gem-bis(alkyl) ketones[133];(B) α-Alkylation of methyl ketones with alcohols for the synthesis of monoselective linear ketones[134];(C) Proposed mechanism of (B)[134] |
C键被Ni—H物种还原,最后在碱作用下,发生消除反应得到最终产物。The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。
| [1] |
Bullock R M ( Ed.). Catalysis Without Precious Metals, Wiley-VCH, 2010.
|
| [2] |
Schröder D, Shaik S , Schwarz H. Acc. Chem. Res., 2000,33:139.
|
| [3] |
Poli R , Harvey J N. Chem. Soc. Rev., 2003,32:1.
|
| [4] |
Chirik P J. Angew. Chem. Int. Ed., 2017,56:5170.
|
| [5] |
Stradiotto M, Lundgren R J .( eds) Ligand design in metal chemistry: Wiley-VCH, 2016.
|
| [6] |
Summers L A. Adv. Heterocycl. Chem., 1978,22:1.
|
| [7] |
Happ B, Winter A, Hager M D , Schubert U S. Chem. Soc. Rev., 2012,41:2222.
|
| [8] |
Schöne S, Radoske T, März J, Stumpf T, Ikeda-Ohno A. Inorg. Chem ., 2018,57:13318.
|
| [9] |
Ying C H, Yan S B , Duan W L. Org. Lett., 2014,16:500.
|
| [10] |
Alreja P, Kaur N. RSC Adv ., 2016,6:23169.
|
| [11] |
Sigman D S, Mazumder A , Perrin D M. Chem. Rev., 1993,93:2295.
|
| [12] |
Kalyanasundaram K. Photochemistry of Polypyridine and Porphyrin Complexes. London: Academic Press, 1991.
|
| [13] |
Vrábel M, Hocek M, Havran L, Fojta M, Votruba I , Klepetá
|
| [14] |
Teulade-Fichou M-P, Carrasco C, Guittat L, Bailly C, Alberti P, Mergny J L, David A, Lehn J M, Wilson W D . . Am. Chem. Soc., 2003,125:4732.
|
| [15] |
Ma D L , Chan D S H, Leung C H. Acc. Chem. Res., 2014,47:3614.
|
| [16] |
Marko I E, Giles P R, Tsukazaki M, Brown S M, Urch C J . Science, 1996,274:2044.
|
| [17] |
ten Brink G J, Arends I W, Sheldon R A . Science, 2000,287:1636.
|
| [18] |
Oeschger R J, Larsen M A, Bismuto A, Hartwig J F .. Am. Chem. Soc., 2019,141:16479.
|
| [19] |
Chelucci G , Thummel R P. Chem. Rev., 2002,102:3129.
|
| [20] |
Schoffers E. Eur. J. Org. Chem., 2003,2003:1145.
|
| [21] |
Kwong H L, Yeung H L, Yeung C T, Lee W S, Lee C S , Wong W L. Coord. Chem. Rev., 2007,251:2188.
|
| [22] |
Blau F. Monatsh. Chem ., 1898,19:647.
|
| [23] |
Halcrow B E, Kermack W O .. Chem. Soc., 1946,155.
|
| [24] |
Belser P, Bernhard S, Guerig U . Tetrahedron., 1996,52:2937.
|
| [25] |
Riesgo E C, Jin X, Thummel R P .. Org. Chem., 1996,61:3017.
|
| [26] |
Lu Y , Jahng Y. Chin. J. Chem., 2019,37:221.
|
| [27] |
Larsen A F, Ulven T. Org. Lett ., 2011,13:3546.
|
| [28] |
Graf G I , Hastreiter D, da Silva L E, Rebelo R A, Montalban A G, McKillop A. Tetrahedron., 2002,58:9095.
|
| [29] |
De K, Legros J, Crousse B, Chandrasekaran S , Bonnet-Delpon D. Org. Biomol. Chem., 2011,9:347.
|
| [30] |
Wang T, Wang H, Li G, Li M, Bo Z, Chen Y . Macromolecules, 2016,49:4088.
|
| [31] |
Sun X T, Zhu J, Xia Y T, Wu L . Chem CatChem., 2017,9:2463.
|
| [32] |
Norinder J, Matsumoto A, Yoshikai N, Nakamura E .. Am. Chem. Soc., 2008,130:5858.
|
| [33] |
Ilies L, Matsumoto A, Kobayashi M, Yoshikai N, Nakamura E . Synlett., 2012,23:2381.
|
| [34] |
Valléé F, Mousseau J J, Charette A B .. Am. Chem. Soc., 2010,132:1514.
|
| [35] |
Huang Y, Moret M E , Klein Gebbink R J. Eur.[J]. Org. Chem., 2014,2014:3788.
|
| [36] |
Uchiyama N, Shirakawa E, Nishikawa R, Hayashi T.
|
| [37] |
Parnes R, Kshirsagar U A, Werbeloff A, Regev C, Pappo D. Org. Lett ., 2012,14:3324.
|
| [38] |
Li C, Chen T , Han L B. Dalton. Trans., 2016,45:14893.
|
| [39] |
Yang J M, Cai Y, Zhu S F , Zhou Q L. Org. Biomol. Chem., 2016,14:5516.
|
| [40] |
Mondal R, Sinha S, Das S, Chakraborty G , Paul N D. Adv. Synth. Catal., 2020,362:594.
|
| [41] |
Li Z L, Sun K K, Wu P Y, Cai C .. Org. Chem., 2019,84:6830.
|
| [42] |
Jia J, Zeng X, Liu Z, Zhao L, He C Y, Li X F, Feng Z. Org. Lett ., 2020,22:2816.
|
| [43] |
Nishikawa Y, Yamamoto H .. Am. Chem. Soc., 2011,133:8432.
|
| [44] |
Song H, Kang B , Hong S H. ACS Catal., 2014,4:2889.
|
| [45] |
Das S, Wendt B, Möller K, Junge K , Beller M. Angew. Chem. Int. Ed., 2012,51:1662.
|
| [46] |
Takeda H, Ohashi K, Sekine A, Ishitani O .. Am. Chem. Soc., 2016,138:4354.
|
| [47] |
Shevlin M, Guan X , Driver T G. ACS Catal., 2017,7:5518.
|
| [48] |
Liu G S, Zhang Y Q, Yuan Y A, Xu H .. Am. Chem. Soc., 2013,135:3343.
|
| [49] |
Lu D F, Zhu C L, Jia Z X, Xu H .. Am. Chem. Soc., 2014,136:13186.
|
| [50] |
Zhu C L, Tian J S, Gu Z Y, Xing G W, Xu H. Chem. Sci ., 2015,6:3044.
|
| [51] |
Guo N, Hu M Y, Feng Y , Zhu S F. Org. Chem. Front., 2015,2:692.
|
| [52] |
Wang X, Studer A .. Am. Chem. Soc., 2016,138:2977.
|
| [53] |
Sonehara T, Murakami S, Yamazaki S, Kawatsura M. Org. Lett ., 2017,19:4299.
|
| [54] |
Hu M Y, He Q, Fan S J, Wang Z C, Liu L Y, Mu Y J, Peng Q , Zhu S F. Nat. Commun., 2018,9:221.
|
| [55] |
Hu M Y, Lian J, Sun W, Qiao T Z, Zhu S F .. Am. Chem. Soc., 2019,141:4579.
|
| [56] |
Shin J H, Seong E Y, Mun H J, Jang Y J , Kang E J. Org. Lett., 2018,20:5872.
|
| [57] |
Chu X Q, Cao W B, Xu X P, Ji S J .. Org. Chem., 2017,82:1145.
|
| [58] |
Xia X F, He W, Zhang G W , Wang D. Org. Chem. Front., 2019,6:342.
|
| [59] |
Yu H, Li Z , Bolm C. Angew. Chem. Int. Ed., 2018,57:324.
|
| [60] |
Chen C H, Wu Q Y, Wei C, Liang C, Su G F , Mo D L. Green. Chem., 2018,20:2722.
|
| [61] |
Gao P, Wu H, Yang J C , Guo L N. Org. Lett., 2019,21:7104.
|
| [62] |
Ueda Y, Tsurugi H , Mashima K. Angew. Chem. Int. Ed., 2020,59:1552.
|
| [63] |
Paul J , Lisa Luong Van M, Behar-Pirès M, Guillaume C, Léonel E, Presset M, Le Gall E.[J]. Org. Chem., 2018,83:4078.
|
| [64] |
Xu M, Zheng Z, Wang M, Kong L, Ao Y , Li Y. Org. Biomol. Chem., 2018,16:8761.
|
| [65] |
Liu J, Yang Z, Zheng M, Wu H, Chen N, Xu J . Synthesis, 2019,51:3320.
|
| [66] |
Huang Q, Hu M Y , Zhu S F. Org. Lett., 2019,21:7883.
|
| [67] |
Gao K , Yoshikai N. Angew. Chem. Int. Ed., 2011,50:6888.
|
| [68] |
Wang H, Zhang S, Wang Z, He M, Xu K. Org. Lett ., 2016,18:5628.
|
| [69] |
Nogi K, Fujihara T, Terao J, Tsuji Y.
|
| [70] |
Nogi K, Fujihara T, Terao J, Tsuji Y .. Org. Chem., 2015,80:11618.
|
| [71] |
Krafft M, Hirosawa C, Dalal N, Ramsey C, Stiegman A. Tetrahedron. Lett ., 2001,42:7733.
|
| [72] |
Karthikeyan J, Parthasarathy K , Cheng C H. Chem. Commun., 2011,47:10461.
|
| [73] |
Yao T, Hirano K, Satoh T , Miura M. Angew. Chem. Int. Ed., 2012,51:775.
|
| [74] |
Corpet M, Bai X Z , Gosmini C. Adv. Synth. Catal., 2014,356:2937.
|
| [75] |
Paul J, Presset M, Le Gall E, Léonel E, Retailleau P . Synthesis, 2018,50:254.
|
| [76] |
Lutter F H, Grokenberger L, Benz M, Knochel P. Org. Lett ., 2020,22:3028.
|
| [77] |
Li C L, Jiang X, Lu L Q, Xiao W J , Wu X F. Org. Lett., 2019,21:6919.
|
| [78] |
Sinha S, Das S, Mondal R, Mandal S , Paul N D. Dalton Trans., 2020,49:8448.
|
| [79] |
Adak L, Yoshikai N .. Org. Chem., 2011,76:7563.
|
| [80] |
Wolfe J P, Buchwald S L .. Am. Chem. Soc., 1997,119:6054.
|
| [81] |
Manolikakes G, Gavryushin A, Knochel P .. Org. Chem., 2008,73:1429.
|
| [82] |
Rezazadeh S, Devannah V, Watson D A .. Am. Chem. Soc., 2017,139:8110.
|
| [83] |
Hachiya H, Hirano K, Satoh T, Miura M. Org. Lett ., 2009,11:1737.
|
| [84] |
Khake S M, Soni V, Gonnade R G , Punji B. Chem. Eur. J., 2017,23:2907.
|
| [85] |
Shaw M H, Shurtleff V W, Terrett J A, Cuthbertson J D , MacMillan D W. Science, 2016,352:1304.
|
| [86] |
Gui Y Y, Liao L L, Sun L, Zhang Z, Ye J H, Shen G, Lu Z P, Zhou W J , Yu D G. Chem. Commun., 2017,53:1192.
|
| [87] |
Gui Y Y, Wang Z X, Zhou W J, Liao L L, Song L, Yin Z B, Li J , Yu D G. Asian. J. Org. Chem., 2018,7:537.
|
| [88] |
Gui Y Y, Chen X W, Zhou W J, Yu D G . Synlett., 2017,28:2581.
|
| [89] |
Liao L L, Gui Y Y, Zhang X B, Shen G, Liu H D, Zhou W J, Li J , Yu D G. Org. Lett., 2017,19:3735.
|
| [90] |
Mohanty A , Roy S. Eur. J. Org. Chem., 2019,2019:6702.
|
| [91] |
Zhou J, Fu G C .. Am. Chem. Soc., 2004,126:1340.
|
| [92] |
Liang J, Han J, Wu J, Wu P, Hu J, Hu F, Wu F. Org. Lett ., 2019,21:6844.
|
| [93] |
Molander G A , Argintaru O A. Org. Lett., 2014,16:1904.
|
| [94] |
An L, Xiao Y L, Min Q Q , Zhang X. Angew. Chem. Int. Ed., 2015,54:9079.
|
| [95] |
Basch C H, Liao J, Xu J, Piane J J, Watson M P .. Am. Chem. Soc., 2017,139:5313.
|
| [96] |
Cheng R, Zhao H Y, Zhang S, Zhang X. ACS Catal ., 2019,10:36.
|
| [97] |
Yotsuji K, Hoshiya N, Kobayashi T, Fukuda H, Abe H, Arisawa M , Shuto S. Adv. Synth. Catal., 2015,357:1022.
|
| [98] |
Powell D A, Fu G C .. Am. Chem. Soc., 2004,126:7788.
|
| [99] |
Lin K, Wiles R J, Kelly C B, Davies G H , Molander G A. ACS. Catal., 2017,7:5129.
|
| [100] |
Jensen K L, Standley E A, Jamison T F .. Am. Chem. Soc., 2014,136:11145.
|
| [101] |
Soler-Yanes R , Arribas-Álvarez I, Guisán-Ceinos M, Buñuel E, Cárdenas D J. Chem. Eur. J., 2017,23:1584.
|
| [102] |
Everson D A, Jones B A, Weix D J .. Am. Chem. Soc., 2012,134:6146.
|
| [103] |
Lu X, Yi J, Zhang Z Q, Dai J J, Liu J H, Xiao B, Fu Y , Liu L. Chem. Eur. J., 2014,20:15339.
|
| [104] |
Yin H, Zhao C, You H, Lin K, Gong H.
|
| [105] |
Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett ., 2012,14:3044.
|
| [106] |
Lu W, Liang Z, Zhang Y, Wu F, Qian Q, Gong H . Synthesis, 2013,45:2234.
|
| [107] |
Konev M O, Hanna L E , Jarvo E R. Angew. Chem. Int. Ed., 2016,55:6730.
|
| [108] |
Peng L, Li Y, Li Y, Wang W, Pang H, Yin G. ACS. Catal ., 2018,8:310.
|
| [109] |
Peng L, Li Z, Yin G. Org. Lett ., 2018,20:1880.
|
| [110] |
Jiao K J, Liu D, Ma H X, Qiu H, Fang P , Mei T S. Angew. Chem. Int. Ed., 2020,59:6520.
|
| [111] |
He R D, Li C L, Pan Q Q, Guo P, Liu X Y, Shu X Z .. Am. Chem. Soc., 2019,141:12481.
|
| [112] |
Yu C G, Matsuo Y. Org. Lett ., 2020,22:950.
|
| [113] |
Ueda Y, Tsujimoto N, Yurino T, Tsurugi H, Mashima K. Chem. Sci ., 2019,10:994.
|
| [114] |
Liu Y, Cornella J, Martin R .. Am. Chem. Soc., 2014,136:11212.
|
| [115] |
Börjesson M, Moragas T, Martin R .. Am. Chem. Soc., 2016,138:7504.
|
| [116] |
Moragas T, Martin R . Synthesis, 2016,48:2816.
|
| [117] |
Meng Q Y, Wang S , König B. Angew. Chem. Int. Ed., 2017,56:13426.
|
| [118] |
Sahoo B, Bellotti P, Juliá-Hernández F, Meng Q Y, Crespi S, König B , Martin R. Chem. Eur. J., 2019,25:9001.
|
| [119] |
Wang X, Liu Y, Martin R .. Am. Chem. Soc., 2015,137:6476.
|
| [120] |
Juliá-Hernández F, Moragas T, Cornella J, Martin R . Nature., 2017,545:84.
|
| [121] |
Moragas T, Cornella J, Martin R .. Am. Chem. Soc., 2014,136:17702.
|
| [122] |
Ma C, Zhao C Q, Xu X T, Li Z M, Wang X Y, Zhang K , Mei T S. Org. Lett., 2019,21:2464.
|
| [123] |
van Gemmeren M, Börjesson M, Tortajada A, Sun S Z, Okura K, Martin R . Angew. Chem. Int. Ed., 2017,56:6558.
|
| [124] |
Chen Y G, Shuai B, Ma C, Zhang X J, Fang P , Mei T S. Org. Lett., 2017,19:2969.
|
| [125] |
Moragas T, Gaydou M , Martin R. Angew. Chem. Int. Ed., 2016,55:5053.
|
| [126] |
Yanagi T, Somerville R J, Nogi K, Martin R, Yorimitsu H. ACS. Catal ., 2020,10:2117.
|
| [127] |
Yeh C H, Prasad Korivi R , Cheng C H. Angew. Chem. Int. Ed., 2008,47:4892.
|
| [128] |
Yan W, Li Z, Kishi Y .. Am. Chem. Soc., 2015,137:6219.
|
| [129] |
Cheung C W, Ploeger M L, Hu X. Nat. Commun ., 2017,8:14878.
|
| [130] |
Ploeger M L, Darù A, Harvey J N, Hu X. ACS Catal ., 2020,10:2845.
|
| [131] |
Konev M O , McTeague T A, Johannes J W. ACS Catal., 2018,8:9120.
|
| [132] |
Hachiya H, Hirano K, Satoh T, Miura M . Chemcatchem., 2010,2:1403.
|
| [133] |
Das J, Singh K, Vellakkaran M, Banerjee D. Org. Lett ., 2018,20:5587.
|
| [134] |
Das J, Vellakkaran M, Banerjee D .. Org. Chem., 2019,84:769.
|
| [135] |
Waiba S, Das A, Barman M K, Maji B. ACS Omega ., 2019,4:7082.
|
| [136] |
Raja G C E, Irudayanathan F M, Kim H S, Kim J, Lee S . . Org. Chem., 2016,81:5244.
|
| [137] |
Chen H, Sun S, Liao X. Org. Lett ., 2019,21:3625.
|
| [138] |
Chen H, Liao X . Tetrahedron., 2019,75:4186.
|
| [139] |
Shrestha R , Dorn S C M, Weix D J.[J]. Am. Chem. Soc., 2013,135:751.
|
| [140] |
Gaydou M, Moragas T, Juliá-Hernández F, Martin R .. Am. Chem. Soc., 2017,139:12161.
|
| [141] |
Tortajada A, Ninokata R, Martin R .. Am. Chem. Soc., 2018,140:2050.
|
| [142] |
Kuang Y, Wang X, Anthony D, Diao T.
|
| [143] |
Lin Q, Diao T .. Am. Chem. Soc., 2019,141:17937.
|
| [144] |
Wang W, Ding C, Pang H, Yin G. Org. Lett ., 2019,21:3968.
|
| [145] |
Zhang Y, Xu X, Zhu S. Nat. Commun ., 2019,10:1752.
|
| [146] |
Xu C, Yang Z F, An L, Zhang X. ACS Catal ., 2019,9:8224.
|
| [147] |
Wang X, Nakajima M, Martin R .. Am. Chem. Soc., 2015,137:8924.
|
| [148] |
Wang X, Nakajima M, Serrano E, Martin R .. Am. Chem. Soc., 2016,138:15531.
|
| [149] |
Bunescu A, Lee S, Li Q , Hartwig J F. ACS Cent. Sci., 2017,3:895.
|
| [150] |
Liu B, Hu P, Xu F, Cheng L, Tan M, Han W. Commun. Chem ., 2019,2:5.
|
| [151] |
Zhang M, Hao P, Zuo W, Jie S, Sun W H .. Organomet. Chem., 2008,693:483.
|
| [152] |
Jie S, Zhang S, Wedeking K, Zhang W, Ma H, Lu X, Deng Y, Sun W H . C. R. Chimie., 2006,9:1500.
|
| [153] |
Yang Y, Yang P, Zhang C, Li G, Yang X J, Wu B, Janiak C . J. Mol. Catal. A: Chem., 2008,296:9.
|
/
| 〈 |
|
〉 |